Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomed Pharmacother ; 134: 111109, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341050

RESUMO

Cutaneous leishmaniasis (CL) is a neglected tropical skin disease caused by the protozoan genus Leishmania. The treatment is restricted to a handful number of drugs that exhibit toxic effects, limited efficacy, and drug resistance. Additionally, developing an effective topical treatment is still an enormous unmet medical challenge. Natural oils, e.g. the oleoresin from P. emarginatus fruits (SO), contain various bioactive molecules, especially terpenoid compounds such as diterpenes and sesquiterpenes. However, its use in topical formulations can be impaired due to the natural barrier of the skin for low water solubility compounds. Nanoemulsions (NE) are drug delivery systems able to increase penetration of lipophilic compounds throughout the skin, improving their topical effect. In this context, we propose the use of SO-containing NE (SO-NE) for CL treatment. The SO-NE was produced by a low energy method and presented suitable physicochemical characteristic: average diameter and polydispersity index lower than 180 nm and 0.2, respectively. Leishmania (Leishmania) amazonensis-infected BALB/c mice were given topical doses of SO or SO-NE. The topical use of a combination of SO-NE and intraperitoneal meglumine antimoniate reduced lesion size by 41 % and tissue regeneration was proven by histopathological analyses. In addition, a reduction in the parasitic load and decreased in the level of IFN-γ in the lesion may be associated, as well as a lower level of the cytokine IL-10 may be associated with a less intense inflammatory process. The present study suggests that SO-NE in combination meglumine antimoniate represents a promising alternative for the topical treatment of CL caused by L. (L.) amazonensis.


Assuntos
Fabaceae , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Tripanossomicidas/farmacologia , Administração Tópica , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Composição de Medicamentos , Quimioterapia Combinada , Emulsões , Fabaceae/química , Feminino , Interações Hospedeiro-Parasita , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Antimoniato de Meglumina/farmacologia , Mesocricetus , Camundongos Endogâmicos BALB C , Nanopartículas , Carga Parasitária , Extratos Vegetais/isolamento & purificação , Pele/parasitologia , Pele/patologia , Tripanossomicidas/isolamento & purificação
2.
Curr Drug Deliv ; 14(1): 54-64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27633261

RESUMO

BACKGROUND: Açaí berry, from the Euterpe oleracea Mart. Palm, has been described as the most important fruit in the Brazilian Amazon. Several studies have reported that anthocyanins (ACNs), one of the components of the açaí, have enormous potential for pharmaceuticals applications. However, the bioavailability of anthocyanins is relatively low compared to that of other flavonoids. Then, in the present work, anthocyanins-loaded nanoparticles have been developed to overcome their poor bioavailability. METHODS: A two-level factorial design with three factors was considered to evaluate the effect of EUDRAGIT ® L100, polyethylene glycol 2000 (PEG 2000) and polysorbate 80 on encapsulation efficiency (EE) of anthocyanins. Also, major parameters of nanoparticles were assessed by using mainly SEM microscopy and Dynamic light scattering. RESULTS: PEG 2000 was the only individual factor that has statistical significance (95% confidence level). The process yields (PY) were found in between 67% and 92%; the particle size and morphology analysis showed two distribution size, one for NPs and another for the agglomerates. CONCLUSION: The pH-sensitive polymer together with the hydrophilic polymer showed to be suitable as ACNs delivery system. The delayed release profile of ACNs, observed for all formulations, can enhance their poor bioavailability. Nevertheless, ACNs bioavailability in vivo remains to be studied.


Assuntos
Antocianinas/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Nanopartículas/química , Antocianinas/farmacocinética , Disponibilidade Biológica , Composição de Medicamentos , Concentração de Íons de Hidrogênio , Estrutura Molecular
3.
Int J Nanomedicine ; 8: 3467-77, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24092971

RESUMO

Despite recent advances in nonsteroidal anti-inflammatory drug (NSAID) formulations, the design of targeted delivery systems to improve the efficacy and reduce side effects of NSAIDs continues to be a focus of much research. Enteric nanoparticles have been recognized as a potential system to reduce gastrointestinal irritations caused by NSAIDs. The aim of this study was to evaluate the effect of EUDRAGIT® L100, polyethylene glycol, and polysorbate 80 on encapsulation efficiency of indomethacin within enteric nanoparticles. Formulations were developed based on a multilevel factorial design (three factors, two levels). The amount of polyethylene glycol was shown to be the factor that had the greatest influence on the encapsulation efficiency (evaluated response) at 95% confidence level. Some properties of nanoparticles like process yield, drug-polymer interaction, particle morphology, and in vitro dissolution profile, which could affect biological performance, have also been evaluated.


Assuntos
Líquidos Corporais/química , Indometacina/química , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Absorção , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Difusão , Composição de Medicamentos/métodos , Indometacina/administração & dosagem , Tamanho da Partícula , Solubilidade
4.
Rev. bras. farmacogn ; 23(1): 194-199, Jan.-Feb. 2013. graf, tab
Artigo em Inglês | LILACS | ID: lil-666181

RESUMO

Calophyllum brasiliense Cambess, Calophyllaceae, is of great interest in folk medicine and is used in the treatment of various diseases such as diabetes. Granules containing the hydroethanolic extract from the stem bark of C. brasiliense were obtained. The polyphenol content was standardized, and the average weight, disintegration, and the dissolution profiles of the capsules were determined after encapsulation. The capsules had an average weight of 574.5±8.0 mg. In vitro tests showed that the most efficient disintegration profile was in hydrochloric acid buffer (pH 1.2), with a capsule disintegration time within 9 min. The dissolution analysis showed a better uniformity of capsule content release when the test was performed in a hydrochloric acid buffer (pH 1.2), with a maximal release rate at 15 min (giving a polyphenol content of 4.38%, which corresponds to a concentration of 0.0080 mg/mL). In distilled water, the maximal release was reached at 20 min (giving a polyphenol content of 5.41%, which is equivalent to 0.0105 mg/mL). In phosphate buffer, the maximal release of capsule contents was reached at the end of the dissolution assay (30 min), with the lowest amount of released polyphenols (3.61%, which corresponds to a concentration of 0.0070 mg/mL). The encapsulated form of the hydroethanolic extract of C. brasiliense was shown to have the necessary traits of a desirable delivery agent, and the dissolution test was an effective analysis of this material's polyphenol release profile for the specific dosage form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA