Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Pathol J ; 40(1): 40-47, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326957

RESUMO

Garlic can be infected by a variety of viruses, but mixed infections with leek yellow stripe virus, onion yellow dwarf virus, and allexiviruses are the most damaging, so an easy, inexpensive on-site method to simultaneously detect at least these three viruses with a certain degree of accuracy is needed to produce virus-free plants. The most common laboratory method for diagnosis is multiplex reverse transcription polymerase chain reaction (RT-PCR). However, allexiviruses are highly diverse even within the same species, making it difficult to design universal PCR primers for all garlic-growing regions in the world. To solve this problem, we developed an inexpensive on-site detection system for the three garlic viruses that uses a commercial mobile PCR device and a compact electrophoresis system with a blue light. In this system, virus-specific bands generated by electrophoresis can be identified by eye in real time because the PCR products are labeled with a fluorescent dye, FITC. Because the electrophoresis step might eventually be replaced with a lateral flow assay (LFA), we also demonstrated that a uniplex LFA can be used for virus detection; however, multiplexing and a significant cost reduction are needed before it can be used for on-site detection.

2.
Microbiol Spectr ; : e0234023, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706684

RESUMO

Host adaptation plays a crucial role in virus evolution and is a consequence of long-term interactions between virus and host in a complex arms race between host RNA silencing and viral RNA silencing suppressor (RSS) as counterdefense. Leek yellow stripe virus (LYSV), a potyvirus causing yield loss of garlic, infects several species of Allium plants. The unexpected discovery of an interspecific hybrid of garlic, leek, and great-headed (GH) garlic motivated us to explore the host-adaptive evolution of LYSV. Here, using Bayesian phylogenetic comparative methods and a functional assay of viral RSS activity, we show that the evolutionary context of LYSV has been shaped by the host adaptation of the virus during its coevolution with Allium plants. Our phylogenetic analysis revealed that LYSV isolates from leek and their taxonomic relatives (Allium ampeloprasum complex; AAC) formed a distinct monophyletic clade separate from garlic isolates and are likely to be uniquely adapted to AAC. Our comparative studies on viral accumulation indicated that LYSV accumulated at a low level in leek, whereas LYSVs were abundant in other Allium species such as garlic and its relatives. When RSS activity of the viral P1 and HC-Pro of leek LYSV isolate was analyzed, significant synergism in RSS activity between the two proteins was observed in leek but not in other species, suggesting that viral RSS activity may be important for the viral host-specific adaptation. We thus consider that LYSV may have undergone host-specific evolution at least in leek, which must be driven by speciation of its Allium hosts. IMPORTANCE Potyviruses are the most abundant plant RNA viruses and are extremely diversified in terms of their wide host range. Due to frequent host switching during their evolution, host-specific adaptation of potyviruses may have been shaped by numerous host factors. However, any critical determinants for viral host range remain largely unknown, possibly because of the repeated gain and loss of virus infectivity of plants. Leek yellow stripe virus (LYSV) is a species of the genus Potyvirus, which has a relatively narrow host range, generally limited to hosts in the genus Allium. Our investigations on leek and leek relatives (Allium ampeloprasum complex), which must have been generated through interspecies hybridization, revealed that LYSV accumulation remained low in leek as a result of viral host adaptation in competition with host resistance such as RNA silencing. This study presents LYSV as an ideal model to study the process of host-adaptive evolution and virus-host coevolution.

3.
PLoS Pathog ; 19(6): e1011457, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379324

RESUMO

The genus Allexivirus currently includes eight virus species that infect allium plants. Previously, we showed that there are two distinct groups of allexiviruses (deletion [D]-type and insertion [I]-type) based on the presence or absence of a 10- to 20-base insert (IS) between the coat protein (CP) and cysteine rich protein (CRP) genes. In the present study of CRPs to analyze their functions, we postulated that evolution of allexiviruses may have been largely directed by CRPs and thus proposed two evolutionary scenarios for allexiviruses based mainly on the presence or absence of IS and determined by how the allexiviruses challenge host resistance mechanisms (RNA silencing and autophagy). We found that both CP and CRP are RNA silencing suppressors (RSS), that they can inhibit each other's RSS activity in the cytoplasm, and that CRP becomes a target of host autophagy in the cytoplasm but not CP. To mitigate CRP interference with CP, and to increase the CP's RSS activity, allexiviruses developed two strategies: confinement of D-type CRP in the nucleus and degradation of I-type CRP by autophagy in the cytoplasm. Here, we demonstrate that viruses of the same genus achieve two completely different evolutionary scenarios by controlling expression and subcellular localization of CRP.


Assuntos
Flexiviridae , Vírus , Flexiviridae/genética , Flexiviridae/metabolismo , Interferência de RNA , Vírus/genética , Plantas/metabolismo , Autofagia/genética , RNA Viral/genética , Nicotiana , Doenças das Plantas/genética
4.
Plant Pathol J ; 38(4): 383-394, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35953058

RESUMO

In Japan, the P1 protein (S-type) encoded by leek yellow stripe virus (LYSV) isolates detected in Honshu and southward is shorter than the P1 (N-type) of LYSV isolates from garlic grown in Hokkaido due to a large deletion in the N-terminal half. In garlic fields in Hokkaido, two types of LYSV isolate with N- and S-type P1s are sometimes found in mixed infections. In this study, we confirmed that N- and S-type P1 sequences were present in the same plant and that they belong to different evolutionary phylogenetic groups. To investigate how LYSV with S-type P1 (LYSV-S) could have invaded LYSV with N-type P1 (LYSV-N)-infected garlic, we examined wild Allium spp. plants in Hokkaido and found that LYSV was almost undetectable. On the other hand, in Honshu, LYSV-S was detected at a high frequency in Allium spp. other than garlic, suggesting that the LYSV-S can infect a wider host range of Allium spp. compared to LYSV-N. Because P1 proteins of potyviruses have been reported to promote RNA silencing suppressor (RSS) activity of HC-Pro proteins, we analyzed whether the same was true for P1 of LYSV. In onion, contrary to expectation, the P1 protein itself had RSS activity. Moreover, the RSS activity of S-type P1 was considerably stronger than that of N-type P1, suggesting that LYSV P1 may be able to enhance its RSS activity when the deletion is in the N-terminal half and that acquiring S-type P1 may have enabled LYSV to expand its host range.

5.
Virus Evol ; 8(2): veac060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903148

RESUMO

Characterizing the detailed spatial and temporal dynamics of plant pathogens can provide valuable information for crop protection strategies. However, the epidemiological characteristics and evolutionary trajectories of pathogens can differ markedly from one country to another. The most widespread and important virus of brassica vegetables, turnip mosaic virus (TuMV), causes serious plant diseases in Japan. We collected 317 isolates of TuMV from Raphanus and Brassica plants throughout Japan over nearly five decades. Genomic sequences from these isolates were combined with published sequences. We identified a total of eighty-eight independent recombination events in Japanese TuMV genomes and found eighty-two recombination-type patterns in Japan. We assessed the evolution of TuMV through space and time using whole and partial genome sequences of both nonrecombinants and recombinants. Our results suggest that TuMV was introduced into Japan after the country emerged from its isolationist policy (1639-1854) in the Edo period and then dispersed to other parts of Japan in the 20th century. The results of our analyses reveal the complex structure of the TuMV population in Japan and emphasize the importance of identifying recombination events in the genome. Our study also provides an example of surveying the epidemiology of a virus that is highly recombinogenic.

6.
Viruses ; 14(3)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336988

RESUMO

Our paper presents detailed evolutionary analyses of narcissus viruses from wild and domesticated Narcissus plants in Japan. Narcissus late season yellows virus (NLSYV) and narcissus degeneration virus (NDV) are major viruses of Narcissus plants, causing serious disease outbreaks in Japan. In this study, we collected Narcissus plants showing mosaic or striped leaves along with asymptomatic plants in Japan for evolutionary analyses. Our findings show that (1) NLSYV is widely distributed, whereas the distribution of NDV is limited to the southwest parts of Japan; (2) the genomes of NLSYV isolates share nucleotide identities of around 82%, whereas those of NDV isolates are around 94%; (3) three novel recombination type patterns were found in NLSYV; (4) NLSYV comprises at least five distinct phylogenetic groups whereas NDV has two; and (5) infection with narcissus viruses often occur as co-infection with different viruses, different isolates of the same virus, and in the presence of quasispecies (mutant clouds) of the same virus in nature. Therefore, the wild and domesticated Narcissus plants in Japan are somewhat like a melting pot of potyviruses and other viruses.


Assuntos
Narcissus , Potyvirus , Japão , Filogenia
7.
Front Microbiol ; 12: 789596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956155

RESUMO

Scallion mosaic virus (ScaMV) belongs to the turnip mosaic virus phylogenetic group of potyvirus and is known to infect domestic scallion plants (Allium chinense) in China and wild Japanese garlic (Allium macrostemon Bunge) in Japan. Wild Japanese garlic plants showing asymptomatic leaves were collected from different sites in Japan during 2012-2015. We found that 73 wild Japanese garlic plants out of 277 collected plants were infected with ScaMV, identified by partial genomic nucleotide sequences of the amplified RT-PCR products using potyvirus-specific primer pairs. Sixty-three ScaMV isolates were then chosen, and those full genomic sequences were determined. We carried out evolutionary analyses of the complete polyprotein-coding sequences and four non-recombinogenic regions of partial genomic sequences. We found that 80% of ScaMV samples have recombination-like genome structure and identified 12 recombination-type patterns in the genomes of the Japanese ScaMV isolates. Furthermore, we found two non-recombinant-type patterns in the Japanese population. Because the wild plants and weeds may often serve as reservoirs of viruses, it is important to study providing the exploratory investigation before emergence in the domestic plants. This is possibly the first epidemiological and evolutionary study of a virus from asymptomatic wild plants.

8.
Microbiol Resour Announc ; 10(27): e0053421, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236234

RESUMO

We present here the complete genome sequence of isolate Bari 1, a mild strain of cauliflower mosaic virus (CaMV). The isolate was collected from Diplotaxis tenuifolia (perennial wall-rocket) in Bari, Italy. The genome was 8,020 nucleotides long and shared ≤85.4% nucleotide identity with other CaMV isolates.

9.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33741737

RESUMO

Plant pathogens have agricultural impacts on a global scale and resolving the timing and route of their spread can aid crop protection and inform control strategies. However, the evolutionary and phylogeographic history of plant pathogens in Eurasia remains largely unknown because of the difficulties in sampling across such a large landmass. Here, we show that turnip mosaic potyvirus (TuMV), a significant pathogen of brassica crops, spread from west to east across Eurasia from about the 17th century CE. We used a Bayesian phylogenetic approach to analyze 579 whole genome sequences and up to 713 partial sequences of TuMV, including 122 previously unknown genome sequences from isolates that we collected over the past five decades. Our phylogeographic and molecular clock analyses showed that TuMV isolates of the Asian-Brassica/Raphanus (BR) and basal-BR groups and world-Brassica3 (B3) subgroup spread from the center of emergence to the rest of Eurasia in relation to the host plants grown in each country. The migration pathways of TuMV have retraced some of the major historical trade arteries in Eurasia, a network that formed the Silk Road, and the regional variation of the virus is partly characterized by different type patterns of recombinants. Our study presents a complex and detailed picture of the timescale and major transmission routes of an important plant pathogen.


Assuntos
Brassica/virologia , Economia , Genoma Viral , Genômica , Doenças das Plantas/virologia , Potyvirus/fisiologia , Variação Genética , Genômica/métodos , Geografia , Filogenia , Filogeografia , Potyvirus/classificação
10.
Virus Evol ; 6(2): veaa056, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33324488

RESUMO

Potato virus Y (PVY) is a destructive plant pathogen that causes considerable losses to global potato and tobacco production. Although the molecular structure of PVY is well characterized, the evolutionary and global transmission dynamics of this virus remain poorly understood. We investigated the phylodynamics of the virus by analysing 253 nucleotide sequences of the genes encoding the third protein (P3), cylindrical inclusion protein (CI), and the nuclear inclusion protein (NIb). Our Bayesian phylogenetic analyses showed that the mean substitution rates of different regions of the genome ranged from 8.50 × 10-5 to 1.34 × 10-4 substitutions/site/year, whereas the time to the most recent common ancestor of PVY varied with the length of the genomic regions and with the number of viral isolates being analysed. Our phylogeographic analysis showed that the PVY population originated in South America and was introduced into Europe in the 19th century, from where it spread around the globe. The migration pathways of PVY correlate well with the trade routes of potato tubers, suggesting that the global spread of PVY is associated with human activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...