Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoporos Int ; 28(11): 3189-3197, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921128

RESUMO

Precision errors need to be known when monitoring bone micro-architecture in children with HR-pQCT. Precision errors for trabecular bone micro-architecture ranged from 1 to 8% when using the standard evaluation at the radius and tibia. Precision errors for cortical bone micro-architecture ranged from 1 to 11% when using the advanced cortical evaluation. INTRODUCTION: Our objective was to define HR-pQCT precision errors (CV%RMS) and least significant changes (LSCs) at the distal radius and tibia in children using the standard evaluation and the advanced cortical evaluation. METHODS: We scanned the distal radius (7% of ulnar length) and tibia (8% of tibia length) of 32 children (age range 8-13; mean age 11.3; SD 1.6 years) twice (1 week apart) using HR-pQCT (XtremeCT1). We calculated root-mean-squared coefficients of variation (CV%RMS) to define precision errors and LSC to identify differences required to detect change. RESULTS: Precision errors ranged between 1-8 and 1-5% for trabecular bone outcomes (obtained with standard evaluation) and between 1.5-11 and 0.5-6% for cortical bone outcomes (obtained with advanced cortical evaluation) at the distal radius and tibia, respectively. Related LSCs ranged between 3-21 and 3-14% for trabecular bone outcomes and between 4-30 and 2-16% for cortical bone outcomes at the distal radius and tibia, respectively. CONCLUSIONS: HR-pQCT precision errors were between 1 and 8% (LSC 3-21%) for trabecular bone outcomes and 1 and 11% (LSC 2-30%) for cortical bone outcomes at the radius and tibia in children. Cortical bone outcomes obtained using the advanced cortical evaluation appeared to have lower precision errors than cortical outcomes derived using the standard evaluation. These findings, combined with better-defined cortical bone contours with advanced cortical evaluation, indicate that metrics from advanced cortical evaluation should be utilized when monitoring cortical bone properties in children.


Assuntos
Densidade Óssea/fisiologia , Rádio (Anatomia)/fisiologia , Tíbia/fisiologia , Adolescente , Antropometria/métodos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiologia , Criança , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Rádio (Anatomia)/diagnóstico por imagem , Reprodutibilidade dos Testes , Caracteres Sexuais , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
2.
J Musculoskelet Neuronal Interact ; 17(2): 59-68, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28574412

RESUMO

OBJECTIVES: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. METHODS: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman's rho to identify associations between CV% and time between measurements, child's age or anthropometrics. RESULTS: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p⟨0.05) with CV% at the tibia. CONCLUSION: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS⟨5%) in children.


Assuntos
Densidade Óssea/fisiologia , Osso Cortical/diagnóstico por imagem , Rádio (Anatomia)/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adolescente , Criança , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino
3.
BMC Musculoskelet Disord ; 17(1): 389, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27619649

RESUMO

BACKGROUND: The distal radius is the most common osteoporotic fracture site occurring in postmenopausal women. Finite element (FE) modeling is a non-invasive mathematical technique that can estimate bone strength using inputted geometry/micro-architecture and tissue material properties from computed tomographic images. Our first objective was to define and compare in vivo precision errors for three high-resolution peripheral quantitative computed tomography (HR-pQCT, XtremeCT; Scanco) based FE models of the distal radius and tibia in postmenopausal women. Our second objective was to assess the role of scan interval, scan quality, and common region on precision errors of outcomes for each FE model. METHODS: Models included: single-tissue model (STM), cortical-trabecular dual-tissue model (DTM), and one scaled model using imaged bone mineral density (E-BMD). Using HR-pQCT, we scanned the distal radius and tibia of 34 postmenopausal women (74 ± 7 years), at two time points. Primary outcomes included: tissue stiffness, apparent modulus, average von Mises stress, and failure load. Precision errors (root-mean-squared coefficient of variation, CV%RMS) were calculated. Multivariate ANOVA was used to compare the mean of individual CV% among the 3 HR-pQCT-based FE models. Spearman correlations were used to characterize the associations between precision errors of all FE model outcomes and scan/time interval, scan quality, and common region. Significance was accepted at P < 0.05. RESULTS: At the distal radius, CV%RMS precision errors were <9 % (Range STM: 2.8-5.3 %; DTM: 2.9-5.4 %; E-BMD: 4.4-8.7 %). At the distal tibia, CV%RMS precision errors were <6 % (Range STM: 2.7-4.8 %; DTM: 2.9-3.8 %; E-BMD: 1.8-2.5 %). At the radius, Spearman correlations indicated associations between the common region and associated precision errors of the E-BMD-derived apparent modulus (ρ = -0.392; P < 0.001) and von Mises stress (ρ = -0.297; P = 0.007). CONCLUSION: Results suggest that the STM and DTM are more precise for modeling apparent modulus, average von Mises stress, and failure load at the distal radius. Precision errors were comparable for all three models at the distal tibia. Results indicate that the noted differences in precision error at the distal radius were associated with the common scan region, illustrating the importance of participant repositioning within the cast and reference line placement in the scout view during the scanning process.


Assuntos
Análise de Elementos Finitos , Rádio (Anatomia)/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos
4.
Curr Osteoporos Rep ; 14(5): 187-98, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27623679

RESUMO

There is growing recognition of the role of micro-architecture in osteoporotic bone loss and fragility. This trend has been driven by advances in imaging technology, which have enabled a transition from measures of mass to micro-architecture. Imaging trabecular bone has been a key research focus, but advances in resolution have also enabled the detection of cortical bone micro-architecture, particularly the network of vascular canals, commonly referred to as 'cortical porosity.' This review aims to provide an overview of what this level of porosity is, why it is important, and how it can be characterized by imaging. Moving beyond a 'trabeculocentric' view of bone loss holds the potential to improve diagnosis and monitoring of interventions. Furthermore, cortical porosity is intimately linked to the remodeling process, which underpins bone loss, and thus a larger potential exists to improve our fundamental understanding of bone health through imaging of both humans and animal models.


Assuntos
Osso Cortical/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Porosidade , Absorciometria de Fóton , Animais , Fenômenos Biomecânicos , Remodelação Óssea , Osso Cortical/patologia , Osso Cortical/fisiopatologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Osteoporose/patologia , Osteoporose/fisiopatologia , Tomografia Computadorizada por Raios X
5.
Osteoporos Int ; 27(2): 789-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26252976

RESUMO

UNLABELLED: Precision errors of cortical bone micro-architecture from high-resolution peripheral quantitative computed tomography (pQCT) ranged from 1 to 16 % and did not differ between automatic or manually modified endocortical contour methods in postmenopausal women or young adults. In postmenopausal women, manually modified contours led to generally higher cortical bone properties when compared to the automated method. INTRODUCTION: First, the objective of the study was to define in vivo precision errors (coefficient of variation root mean square (CV%RMS)) and least significant change (LSC) for cortical bone micro-architecture using two endocortical contouring methods: automatic (AUTO) and manually modified (MOD) in two groups (postmenopausal women and young adults) from high-resolution pQCT (HR-pQCT) scans. Second, it was to compare precision errors and bone outcomes obtained with both methods within and between groups. METHODS: Using HR-pQCT, we scanned twice the distal radius and tibia of 34 postmenopausal women (mean age ± SD 74 ± 7 years) and 30 young adults (27 ± 9 years). Cortical micro-architecture was determined using AUTO and MOD contour methods. CV%RMS and LSC were calculated. Repeated measures and multivariate ANOVA were used to compare mean CV% and bone outcomes between the methods within and between the groups. Significance was accepted at P < 0.05. RESULTS: CV%RMS ranged from 0.9 to 16.3 %. Within-group precision did not differ between evaluation methods. Compared to young adults, postmenopausal women had better precision for radial cortical porosity (precision difference 9.3 %) and pore volume (7.5 %) with MOD. Young adults had better precision for cortical thickness (0.8 %, MOD) and tibial cortical density (0.2 %, AUTO). In postmenopausal women, MOD resulted in 0.2-54 % higher values for most cortical outcomes, as well as 6-8 % lower radial and tibial cortical BMD and 2 % lower tibial cortical thickness. CONCLUSIONS: Results suggest that AUTO and MOD endocortical contour methods provide comparable repeatability. In postmenopausal women, manual modification of endocortical contours led to generally higher cortical bone properties when compared to the automated method, while no between-method differences were observed in young adults.


Assuntos
Osteoporose Pós-Menopausa/diagnóstico por imagem , Adulto , Idoso , Envelhecimento/fisiologia , Densidade Óssea/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose Pós-Menopausa/fisiopatologia , Porosidade , Pós-Menopausa/fisiologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/fisiologia , Reprodutibilidade dos Testes , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
6.
J Musculoskelet Neuronal Interact ; 15(2): 190-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26032212

RESUMO

BACKGROUND: Least Significant Change (LSC) assists in determining whether observed bone change is beyond measurement precision. Monitoring Time Interval (MTI) estimates time required to reliably detect skeletal changes. MTIs have not been defined for bone outcomes provided by high resolution peripheral quantitative computed tomography (HR-pQCT). The purpose of this study was to determine the LSCs and MTIs for HR-pQCT derived bone area, density and micro-architecture with postmenopausal women. METHODS: Distal radius and tibia of 33 postmenopausal women (mean age: 77, SD: ±7 years), from the Saskatoon cohort of the Canadian Multicentre Osteoporosis Study (CaMos), were measured using HR-pQCT at baseline and 1-year later. We determined LSC from precision errors and divided them by the median annual percent changes to define MTIs for bone area, density, and micro-architecture. RESULTS: Distal radius: HR-pQCT LSCs indicated a 1-8% observed change was needed for reliable monitoring of bone area and density while a 3-18% change was needed for micro-architectural measures. The longest MTIs (>3 years) pertained to cortical and trabecular area and density measures, cortical thickness and bone volume fraction; the shortest MTIs (~2 years) pertained to bone micro-architectural measures (trabecular number, thickness, separation and heterogeneity). Distal tibia: LSCs indicated a <1-5% observed change was needed for reliable monitoring of bone area and density, while a 3-19% change was needed for micro-architectural measures. The longest MTIs (>3 years) pertained to trabecular density, bone volume fraction, number, separation and heterogeneity; the shortest MTIs (~1 year) pertained to cortical and trabecular area, cortical density and thickness. CONCLUSION: MTIs suggest that performing HR-pQCT follow-up measures in postmenopausal women every 2 years at the distal radius and every 1 year at the distal tibia to monitor true skeletal changes as indicated by the LSCs.


Assuntos
Monitorização Fisiológica , Osteoporose Pós-Menopausa/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Pessoa de Meia-Idade , Cintilografia , Rádio (Anatomia)/diagnóstico por imagem , Saskatchewan/epidemiologia , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
J Musculoskelet Neuronal Interact ; 14(3): 286-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25198223

RESUMO

OBJECTIVES: To assess the linearity and sex-specificity of damping coefficients used in a single-damper-model (SDM) when predicting impact forces during the worst-case falling scenario from fall heights up to 25 cm. METHODS: Using 3-dimensional motion tracking and an integrated force plate, impact forces and impact velocities were assessed from 10 young adults (5 males; 5 females), falling from planted knees onto outstretched arms, from a random order of drop heights: 3, 5, 7, 10, 15, 20, and 25 cm. We assessed the linearity and sex-specificity between impact forces and impact velocities across all fall heights using analysis of variance linearity test and linear regression, respectively. Significance was accepted at P<0.05. RESULTS: Association between impact forces and impact velocities up to 25 cm was linear (P=0.02). Damping coefficients appeared sex-specific (males: 627 Ns/m, R(2)=0.70; females: 421 Ns/m; R(2)=0.81; sex combined: 532 Ns/m, R(2)=0.61). CONCLUSIONS: A linear damping coefficient used in the SDM proved valid for predicting impact forces from fall heights up to 25 cm. RESULTS suggested the use of sex-specific damping coefficients when estimating impact force using the SDM and calculating the factor-of-risk for wrist fractures.


Assuntos
Acidentes por Quedas , Mãos , Adulto , Braço , Fenômenos Biomecânicos , Feminino , Humanos , Modelos Lineares , Masculino , Movimento (Física) , Fraturas do Rádio , Reprodutibilidade dos Testes , Caracteres Sexuais , Adulto Jovem
8.
Osteoporos Int ; 25(8): 2057-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24781379

RESUMO

UNLABELLED: Limited prospective evidence exists regarding bone microarchitectural deterioration. We report annual changes in trabecular and cortical bone microarchitecture at the distal radius and tibia in postmenopausal women. Lost trabeculae with corresponding increase in trabecular thickness at the radius and thinning tibial cortex indicated trabecularization of the cortex at both sites. INTRODUCTION: Osteoporosis is characterized by low bone mass and the deterioration of bone microarchitecture. However, limited prospective evidence exists regarding bone microarchitectural changes in postmenopausal women: a population prone to sustaining osteoporotic fractures. Our primary objective was to characterize the annual change in bone area, density, and microarchitecture at the distal radius and distal tibia in postmenopausal women. METHODS: Distal radius and tibia were measured using high-resolution peripheral quantitative computed tomography (HR-pQCT) at baseline and 1 year later in 51 women (mean age ± SD, 77 ± 7 years) randomly sampled from the Saskatoon cohort of the Canadian Multicentre Osteoporosis Study (CaMos). We used repeated measures analysis of variance (ANOVA) with Bonferroni adjustment for multiple comparisons to characterize the mean annual change in total density, cortical perimeter, trabecular and cortical bone area, density, content, and microarchitecture. Significant changes were accepted at P < 0.05. RESULTS: At the distal radius in women without bone-altering drugs, total density (-1.7%) and trabecular number (-6.4%) decreased, while trabecular thickness (+6.0%), separation (+8.6%), and heterogeneity (+12.1%) increased. At their distal tibia, cortical area (-4.5%), density (-1.9%), content (-6.3%), and thickness (-4.4%) decreased, while trabecular area (+0.4%) increased. CONCLUSIONS: The observed loss of trabeculae with concomitant increase in trabecular size at the distal radius and the declined cortical thickness, density, and content at the distal tibia indicated a site-specific trabecularization of the cortical bone in postmenopausal women.


Assuntos
Osteoporose Pós-Menopausa/patologia , Rádio (Anatomia)/patologia , Tíbia/patologia , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Terapia de Reposição de Estrogênios , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Osteoporose Pós-Menopausa/diagnóstico por imagem , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/fisiopatologia , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/fisiopatologia , Tíbia/diagnóstico por imagem , Tíbia/fisiopatologia , Tomografia Computadorizada por Raios X/métodos
9.
J Biomech ; 45(1): 27-40, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21889149

RESUMO

Bone strain is the governing stimuli for the remodeling process necessary in the maintenance of bone's structure and mechanical strength. Strain gages are the gold standard and workhorses of human bone experimental strain analysis in vivo. The objective of this systematic literature review is to provide an overview for direct in vivo human bone strain measurement studies and place the strain results within context of current theories of bone remodeling (i.e. mechanostat theory). We employed a standardized search strategy without imposing any time restriction to find English language studies indexed in PubMed and Web of Science databases that measured human bone strain in vivo. Twenty-four studies met our final inclusion criteria. Seven human bones were subjected to strain measurements in vivo including medial tibia, second metatarsal, calcaneus, proximal femur, distal radius, lamina of vertebra and dental alveolar. Peak strain magnitude recorded was 9096 µÎµ on the medial tibia during basketball rebounding and the peak strain rate magnitude was -85,500 µÎµ/s recorded at the distal radius during forward fall from standing, landing on extended hands. The tibia was the most exposed site for in vivo strain measurements due to accessibility and being a common pathologic site of stress fracture in the lower extremity. This systematic review revealed that most of the strains measured in vivo in different bones were generally within the physiological loading zone defined by the mechanostat theory, which implies stimulation of functional adaptation necessary to maintain bone mechanical integrity.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/fisiologia , Animais , Humanos , Entorses e Distensões/fisiopatologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...