Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 20: 100629, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441134

RESUMO

Nanodiamonds are increasingly popular in biomedical applications, including optical labelling, drug delivery and nanoscale sensing. Potential new applications are in studying infertility or labelling sperm cells. However, for these applications, it is necessary that nanodiamonds are inert and do not alter sperm properties. In this article, we assessed the biocompatibility of nanodiamonds in detail. We investigated different sizes and concentrations of nanodiamonds and sperm preparation methods. We evaluated if the metabolic activity, membrane integrity, morphology and formation of reactive oxygen species were altered. These parameters were tested for sperm cells in their uncapacitated and capacitated states. Unfortunately, FNDs are not universally biocompatible. Generally, cells in the capacitated state are more prone to stress. Additionally, larger particles and lower concentrations are tolerated better than smaller and higher concentrated particles.

2.
J Biomed Mater Res B Appl Biomater ; 111(2): 241-260, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054531

RESUMO

In vitro cytotoxicity assessment is indispensable in developing new biodegradable implant materials. Zn, which demonstrates an ideal corrosion rate between Mg- and Fe-based alloys, has been reported to have excellent in vivo biocompatibility. Therefore, modifications aimed at improving Zn's mechanical properties should not degrade its biological response. As sufficient strength, ductility and corrosion behavior required of load-bearing implants has been obtained in plastically deformed Zn-3Ag-0.5Mg, the effect of simultaneous Ag and Mg additions on in vitro cytocompatibility and antibacterial properties was studied, in relation to Zn and Zn-3Ag. Direct cell culture on samples and indirect extract-based tests showed almost no significant differences between the tested Zn-based materials. The diluted extracts of Zn, Zn-3Ag, and Zn-3Ag-0.5Mg showed no cytotoxicity toward MG-63 cells at a concentration of ≤12.5%. The cytotoxic effect was observed only at high Zn2+ ion concentrations and when in direct contact with metallic samples. The highest LD50 (lethal dose killing 50% of cells) of 13.4 mg/L of Zn2+ ions were determined for the Zn-3Ag-0.5Mg. Similar antibacterial activity against Escherichia coli and Staphylococcus aureus was observed for Zn and Zn alloys, so the effect is attributed mainly to the released Zn2+ ions exhibiting bactericidal properties. Most importantly, our experiments indicated the limitations of water-soluble tetrazolium salt-based cytotoxicity assays for direct tests on Zn-based materials. The discrepancies between the WST-8 assay and SEM observations are attributed to the interference of Zn2+ ions with tetrazolium salt, therefore favoring its transformation into formazan, giving false cell viability quantitative results.


Assuntos
Implantes Absorvíveis , Ligas , Ligas/farmacologia , Teste de Materiais , Linhagem Celular , Corrosão , Antibacterianos/farmacologia , Escherichia coli , Íons , Zinco/farmacologia , Sais de Tetrazólio/farmacologia , Materiais Biocompatíveis/farmacologia
3.
ACS Nano ; 16(7): 10701-10710, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35771989

RESUMO

Free radicals play a major role in sperm development, including maturation and fertilization, but they are also linked to infertility. Since they are short-lived and reactive, they are challenging to detect with state of the art methodologies. Thus, many details surrounding their role remain unknown. One unknown factor is the source of radicals that plays a role in the sperm maturation process. Two alternative sources have been postulated: First, the NADPH-oxidase system embedded in the plasma membrane (NOX5) and second, the NADH-dependent oxidoreductase of mitochondria. Due to a lack of localized measurements, the relative contribution of each source for capacitation remains unknown. To answer this question, we use a technique called diamond magnetometry, which allows nanoscale MRI to perform localized free radical detection. With this tool, we were able to quantify radical formation in the acrosome of sperm heads. This allowed us to quantify radical formation locally in real time during capacitation. We further investigated how different inhibitors or triggers alter the radical generation. We were able to identify NOX5 as the prominent source of radical generation in capacitation while the NADH-dependent oxidoreductase of mitochondria seems to play a smaller role.


Assuntos
Acrossomo , Capacitação Espermática , Masculino , Humanos , NAD/metabolismo , Sêmen , Espermatozoides/metabolismo , Radicais Livres/metabolismo , Imageamento por Ressonância Magnética , Oxirredutases/metabolismo
4.
Bioact Mater ; 6(10): 3424-3436, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33817418

RESUMO

In recent years, Zn-based materials have been extensively investigated as potential candidates for biodegradable implant applications. The introduction of alloying elements providing solid-solution strengthening and second phase strengthening seems crucial to provide a suitable platform for the thermo-mechanical strengthening of Zn alloys. In this study, a systematic investigation of the microstructure, crystallographic texture, phase composition, and mechanical properties of a Zn-3Ag-0.5Mg (wt%) alloy processed through combined hot extrusion (HE) and cold rolling (CR), followed by short-time heat treatment (CR + HT) at 200 °C was conducted. Besides, the influence of different annealing temperatures on the microstructure and mechanical properties was studied. An adequate combination of processing conditions during CR and HT successfully addressed brittleness obtained in the high-strength HE Zn-3Ag-0.5Mg alloy. By controlling the microstructure, the most promising results were obtained in the sample subjected to 50% CR reduction and 5-min annealing, which were: ultimate tensile strength of 432 MPa, yield strength of 385 MPa, total elongation to failure of 34%, and Vickers microhardness of 125 HV0.3. The obtained properties clearly exceed the mechanical benchmarks for biodegradable implant materials. Based on the conducted investigation, brittle multi-phase Zn alloys' mechanical performance can be substantially enhanced to provide sufficient plasticity by grain refinement through cold deformation process, followed by short-time annealing to restore proper strength.

5.
ACS Biomater Sci Eng ; 7(1): 114-121, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33347752

RESUMO

The phenomenon of superior biological behavior observed in titanium processed by an unconventional severe plastic deformation method, that is, hydrostatic extrusion, has been described within the present study. In doing so, specimens varying significantly in the crystallographic orientation of grains, yet exhibiting comparable grain refinement, were meticulously investigated. The aim was to find the clear origin of enhanced biocompatibility of titanium-based materials, having microstructures scaled down to the submicron range. Texture, microstructure, and surface characteristics, that is, wettability, roughness, and chemical composition, were examined as well as protein adsorption tests and cell response studies were carried out. It has been concluded that, irrespective of surface properties and mean grain size, the (101̅0) crystallographic plane favors endothelial cell attachment on the surface of the severely deformed titanium. Interestingly, an enhanced albumin, fibronectin, and serum adsorption as well as clearly directional growth of the cells with preferentially oriented cell nuclei have been observed on the surfaces having (0001) planes exposed predominantly. Overall, the biological response of titanium fabricated by severe plastic deformation techniques is derived from the synergistic effect of surface irregularities, being the effect of refined microstructures, surface chemistry, and crystallographic orientation of grains rather than grain refinement itself.


Assuntos
Osteoblastos , Titânio , Cristalografia , Propriedades de Superfície , Molhabilidade
6.
ACS Biomater Sci Eng ; 6(2): 898-911, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464848

RESUMO

The process of modern cardiovascular device fabrication should always be associated with an investigation of how surface properties modulate its hemocompatibility through plasma protein adsorption as well as blood morphotic element activation and adhesion. In this work, a package of novel assays was used to correlate the physicochemical properties of thin ceramic coatings with hemocompatibility under dynamic conditions. Different variants of carbon-based films were prepared on polymer substrates using the magnetron sputtering method. The microstructural, mechanical, and surface physicochemical tests were performed to characterize the coatings, followed by investigation of whole human blood quality changes under blood flow conditions using the "Impact R" test, tubes' tester, and radial flow chamber assay. The applied methodology allowed us to determine that aggregate formation on hydrophobic and hydrophilic carbon-based coatings may follow one of the two different mechanisms dependent on the type and conformational changes of adsorbed blood plasma proteins.


Assuntos
Plaquetas , Materiais Revestidos Biocompatíveis , Cerâmica , Humanos , Teste de Materiais , Propriedades de Superfície
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 131: 667-73, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24854245

RESUMO

Pyrene, a fluorescent dye, was incorporated into polystyrene particles coated with polypyrrole. The incorporation was achieved by treating the polypyrrole/polystyrene (PPy/PS) beads in a tetrahydrofuran (THF) solution of the pyrene fluorophore followed by rinsing with methanol. The polystyrene cores of the beads swell in THF, allowing penetration of pyrene molecules into the polystyrene structure. The addition of methanol causes contraction of the swollen polystyrene, which encapsulates the dye molecules inside the beads. It is shown that the polypyrrole coating is permeable with respect to both the dye and the solvent, allowing the transport of molecules between the polystyrene cores and the contacting solution. The polypyrrole adlayer can be used as a matrix for the incorporation of magnetic nanoparticles. Embedded particles provide magnetic functionality to the PPy/PS beads. It is demonstrated that the pyrene-loaded beads can be manipulated with an external magnetic field.


Assuntos
Corantes Fluorescentes/química , Imãs/química , Polímeros/química , Poliestirenos/química , Pirenos/química , Pirróis/química , Corantes Fluorescentes/administração & dosagem , Furanos/química , Fenômenos Magnéticos , Nanopartículas/química , Nanopartículas/ultraestrutura , Pirenos/administração & dosagem
8.
Rev Sci Instrum ; 82(7): 076102, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806236

RESUMO

In this article, the design and characteristics of a micro-fadeometer is presented. The technique allows for a non-(micro-) destructive evaluation of the light fastness of colorants on various materials and can be used to directly assess valuable materials, such as heritage objects, and develop safer display strategies to promote their preservation. The presented instrument has several benefits over standard light ageing methods--low operating cost, non-damaging, real time measurement of induced changes for kinetics studies, and automated high throughput screening of materials. A selection of data is presented to demonstrate the flexibility of the presented instrument and illustrate how it can be used to evaluate museum lighting and oxygen-free display of heritage objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...