Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(10): 2982-2993, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426531

RESUMO

Leaf gas-exchange measurements are useful in assessing plant environmental responses. However, uncertainties in the leaf gas-exchange model potentially limit its application. The main challenge in the model-dependent calculations is to detect violations of assumptions. Here, we developed a system that integrates into one instrument the direct measurement of leaf intercellular CO2 concentration and the standard open-flow (OF) and novel open-diffusion (OD) systems for flux measurement. In the OD system, a gas-permeable membrane between the leaf ambient air and outside air creates CO2 and H2O differentials, rather than the air flow in the OF chamber. We measured hypostomatous and amphistomatous leaves of several species with different photosynthetic capacities [sunflower (Helianthus annuus), grape (Vitis vinifera), lemon (Citrus limon), and cherry (Prunus avium)]. The CO2 and H2O differentials in the OD system strictly depend on the flux measured by the OF system. The lower permeability of the membrane resulted in a larger differential per flux, indicating that the OD system can increase the resolution for a small flux. An analysis of the conductance model along with observations suggested that cuticle and leaf intercellular conductances and the unsaturation of leaf humidity contributed to discrepancies between the direct measurement and standard calculation. The combined system developed here provides an opportunity to address these overlooked concepts in leaf gas exchange.


Assuntos
Dióxido de Carbono , Modelos Biológicos , Fotossíntese , Folhas de Planta , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo , Água/metabolismo
2.
J Exp Bot ; 69(8): 1981-1991, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29432576

RESUMO

Intercellular CO2 concentration of leaves (Ci) is a critical parameter in photosynthesis. Nevertheless, uncertainties in calculating Ci arise as stomata close. Here, by modifying the assimilation chamber of a commercial gas-exchange equipment to directly measure Ci, we demonstrate overestimation of calculated Ci (i.e. Ci(c)) without stimulating stomatal closure. Gas exchange was measured on one side of the leaf while measured Ci (Ci(m)) was acquired simultaneously on the other side of the leaf in hypostomatous passion fruit (Passiflora edulis Sims) and amphistomatous sunflower (Helianthus annuus L.) and common bean (Phaseolus vulgaris L.). The adaxial surface showed comparable Ci(c) and Ci(m) in sunflower, whereas in common bean, where the adaxial surface has a low stomatal density, Ci(c) markedly differed from Ci(m) when the stomata remained open. However, the latter discrepancy disappeared when measuring the leaf flipped upside down so that the gas exchange was measured (i.e. Ci was calculated) on the abaxial side, which has a much higher stomatal density. The passion fruit showed the largest discrepancy on the astomatous side, indicating that the cuticle has a large impact on the calculation. Direct measurement of Ci is recommended as a more accurate estimate than the calculation when stomatal gas transport is restricted. Occurrence of overestimation and prospects for direct measurement are discussed.


Assuntos
Dióxido de Carbono/análise , Helianthus/metabolismo , Passiflora/metabolismo , Phaseolus/metabolismo , Dióxido de Carbono/metabolismo , Gases/análise , Gases/metabolismo , Helianthus/química , Passiflora/química , Phaseolus/química , Fotossíntese , Folhas de Planta/química , Folhas de Planta/metabolismo , Estômatos de Plantas/química , Estômatos de Plantas/metabolismo
3.
Plant Cell Physiol ; 56(10): 1900-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206845

RESUMO

Analyzing the assimilation rate (A) relative to the CO(2) concentration inside leaves (C(i)) has been a useful approach for investigating plant responses to various environments. Nevertheless, there are uncertainties in calculating C(i) when stomata close, restricting the application. Here, A-C(i) curves were traced in sunflower (Helianthus annuus L.) leaves using a method for directly measuring C(i). The method was incorporated into an LI-6400 open gas exchange system, and stomata were closed by feeding 10 µM ABA through petioles. The conductance to CO(2) was derived from the directly measured C(i) and compared with the conductance from the water vapor flux (i.e. the standard calculation). When stomata were open, measured and calculated C(i) gave similar A-C(i) curves. When stomata were closed, the curves differed because measured C(i) departed from the calculated value. This difference caused the calculation to trace an artifactual limitation of photosynthesis. The direct measurement avoided this problem and followed the curve for leaves with open stomata. Largely because of the cuticle, the calculation overestimated CO(2) entry into the leaf because the cuticle transmitted more water vapor than CO(2), and the calculation relied on water vapor. Consequently, the standard calculation gave conductances larger than those from directly measured C(i). Although the cuticle conductance to water vapor remained constant as stomata closed, it increasingly contributed to the overestimation of C(i). The system provided here is not affected by these cuticle properties and thus is expected to open up the opportunity for A-C(i) analysis in plant physiology.


Assuntos
Dióxido de Carbono/metabolismo , Helianthus/metabolismo , Helianthus/fisiologia , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Ceras/metabolismo , Fotossíntese/fisiologia
4.
Biotechnol Appl Biochem ; 60(2): 253-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23587024

RESUMO

Development of techniques utilizing waste without any additional energy or rare catalysts is a starting point for becoming sustainable. In the present work, the complex utilization of greenhouse residues was studied on a commercial scale. Only the energy produced by the process (8%) was used to run the technology, thanks to multilevel heat recuperation and high methane yields (over 340 m(3) volatile solid t(-1) ). Manifestations of labile carbon in relation to available nitrogen, methane yields, and the formation of inhibitors were investigated in detail. The results sweep away many false beliefs about the ratios of carbon to nitrogen and highlight the role of the availability of carbon in phytomass utilization.


Assuntos
Conservação de Recursos Energéticos , Gases , Efeito Estufa
5.
Biotechnol Appl Biochem ; 59(6): 451-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23586954

RESUMO

Underwater high-voltage discharges (3.5 kV) resulting in 4.9 kJ shock waves (50-60 MPa) were studied at the laboratory scale as a Jatropha curcas L. seed disintegration method. Grinding and macerating in an excess of methanol (3.5:1) was advantageous because methanol acts both as a liquid carrier for the pressure shock waves and as a solvent that increases the efficiency of oil extraction while remaining usable for esterification. The influence of the number of shock waves and the intensity of methanol maceration on the heat values of the pressed cake are stated in detail. Soxhlet extraction demonstrated that a greater than 94% oil extraction was achieved. The increased disintegration of vacuoles rich in oil was documented by surface area analysis, mineralization kinetics analysis, and electron microscopy. The working volumes were small, and the proportion of energy inadequate compared to the yields released; however, much can be improved by upgrading the process.


Assuntos
Biocombustíveis , Eletricidade , Jatropha/metabolismo , Água
6.
BMC Plant Biol ; 2: 2, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11926968

RESUMO

BACKGROUND: The tropical plant Ficus microcarpa L. f. cv. Golden Leaves (GL) is a high-light sensitive tropical fig tree in which sun-leaves are yellow and shade-leaves are green. We compared the response of photosynthetic activities to strong light between GL and its wild-type (WT, Ficus microcarpa L. f.). RESULTS: Field measurements of maximum photosystem II (PSII) efficiency (Fv/Fm) of intact sun-leaves in GL showed that photo synthetic activity was severely photoinhibited during the daytime (Fv/Fm = 0.46) and subsequently recovered in the evening (Fv/Fm = 0.76). In contrast, WT did not show any substantial changes of Fv/Fm values throughout the day (between 0.82 and 0.78). Light dependency of the CO2 assimilation rate in detached shade-leaves of GL showed a response similar to that in WT, suggesting no substantial difference in photosynthetic performance between them. Several indicators of photoinhibition, including declines in PSII reaction center protein (D1) content, Fv/Fm value, and O2 evolution and CO2 assimilation rates, all indicated that GL is much more susceptible to photoinhibition than WT. Kinetics of PAM chlorophyll a fluorescence revealed that nonphotochemical quenching (NPQ) capacity of GL was lower than that of WT. CONCLUSION: We conclude that the photosynthetic apparatus of GL is more highly susceptible to photoinhibition than that of WT.


Assuntos
Ficus/efeitos da radiação , Fotossíntese/efeitos da radiação , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Ficus/genética , Ficus/metabolismo , Genótipo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
7.
J Biol Chem ; 277(21): 18373-82, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11907031

RESUMO

Betaine is an important osmoprotectant in many plants, but its transport activity has only been demonstrated using a proline transporter from tomato, a betaine-nonaccumulating plant. In this study, two full-length and one partial transporter genes were isolated from betaine-accumulating mangrove Avicennia marina. Their homologies to betaine transporters from bacteria and betaine/4-aminobutyrate transporters from mammalian cells were low but were high to proline transporters from Arabidopsis and tomato. Two full-length transporters could complement the Na(+)-sensitive phenotype of the Escherichia coli mutant deficient in betT, putPA, proP, and proU. Both transporters could efficiently take up betaine and proline with similar affinities (K(m), 0.32-0.43 mm) and maximum velocities (1.9-3.6 nmol/min/mg of protein). The uptakes of betaine and proline were significantly inhibited by mono- and dimethylglycine but only partially inhibited by betaine aldehyde, choline, and 4-aminobutyrate. Sodium and potassium chloride markedly enhanced betaine uptake rates with optimum concentrations at 0.5 m, whereas sucrose showed only modest activation. The change of amino acids Thr(290)-Thr-Ser(292) in a putative periplasmic loop to Arg(290)-Gly-Arg(292) yielded the active transporter independent of salts, suggesting the positive charge induced a conformational change to the active form. These data clearly indicate that the betaine-accumulating mangrove contains betaine/proline transporters whose properties are distinct from betaine transporters of bacteria and mammalian cells.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/fisiologia , Betaína/metabolismo , Proteínas de Transporte/fisiologia , Árvores/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Clonagem Molecular , Proteínas da Membrana Plasmática de Transporte de GABA , Cinética , Dados de Sequência Molecular , Prolina/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...