Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928121

RESUMO

Vascular endothelial cells form a monolayer in the vascular lumen and act as a selective barrier to control the permeability between blood and tissues. To maintain homeostasis, the endothelial barrier function must be strictly integrated. During acute inflammation, vascular permeability temporarily increases, allowing intravascular fluid, cells, and other components to permeate tissues. Moreover, it has been suggested that the dysregulation of endothelial cell permeability may cause several diseases, including edema, cancer, and atherosclerosis. Here, we reviewed the molecular mechanisms by which endothelial cells regulate the barrier function and physiological permeability.


Assuntos
Permeabilidade Capilar , Células Endoteliais , Endotélio Vascular , Humanos , Animais , Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais
2.
Nat Commun ; 15(1): 4610, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816417

RESUMO

NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication.


Assuntos
Duplicação Gênica , Proteínas NLR , Oryza , Proteínas de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Morte Celular , Filogenia , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Physiol ; 62(11): 1662-1675, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329461

RESUMO

Plants employ two different types of immune receptors, cell surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat-containing proteins (NLRs), to cope with pathogen invasion. Both immune receptors often share similar downstream components and responses but it remains unknown whether a PRR and an NLR assemble into the same protein complex or two distinct receptor complexes. We have previously found that the small GTPase OsRac1 plays key roles in the signaling of OsCERK1, a PRR for fungal chitin, and of Pit, an NLR for rice blast fungus, and associates directly and indirectly with both of these immune receptors. In this study, using biochemical and bioimaging approaches, we revealed that OsRac1 formed two distinct receptor complexes with OsCERK1 and with Pit. Supporting this result, OsCERK1 and Pit utilized different transport systems for anchorage to the plasma membrane (PM). Activation of OsCERK1 and Pit led to OsRac1 activation and, concomitantly, OsRac1 shifted from a small to a large protein complex fraction. We also found that the chaperone Hsp90 contributed to the proper transport of Pit to the PM and the immune induction of Pit. These findings illuminate how the PRR OsCERK1 and the NLR Pit orchestrate rice immunity through the small GTPase OsRac1.


Assuntos
GTP Fosfo-Hidrolases/genética , Proteínas NLR/genética , Oryza/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Receptores de Reconhecimento de Padrão/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas NLR/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
4.
Plant Biotechnol J ; 18(2): 415-428, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31301098

RESUMO

Small signalling peptides, generated from larger protein precursors, are important components to orchestrate various plant processes such as development and immune responses. However, small signalling peptides involved in plant immunity remain largely unknown. Here, we developed a pipeline using transcriptomics- and proteomics-based screening to identify putative precursors of small signalling peptides: small secreted proteins (SSPs) in rice, induced by rice blast fungus Magnaporthe oryzae and its elicitor, chitin. We identified 236 SSPs including members of two known small signalling peptide families, namely rapid alkalinization factors and phytosulfokines, as well as many other protein families that are known to be involved in immunity, such as proteinase inhibitors and pathogenesis-related protein families. We also isolated 52 unannotated SSPs and among them, we found one gene which we named immune response peptide (IRP) that appeared to encode the precursor of a small signalling peptide regulating rice immunity. In rice suspension cells, the expression of IRP was induced by bacterial peptidoglycan and fungal chitin. Overexpression of IRP enhanced the expression of a defence gene, PAL1 and induced the activation of the MAPKs in rice suspension cells. Moreover, the IRP protein level increased in suspension cell medium after chitin treatment. Collectively, we established a simple and efficient pipeline to discover SSP candidates that probably play important roles in rice immunity and identified 52 unannotated SSPs that may be useful for further elucidation of rice immunity. Our method can be applied to identify SSPs that are involved not only in immunity but also in other plant functions.


Assuntos
Regulação da Expressão Gênica de Plantas , Magnaporthe , Oryza , Peptídeos , Transcriptoma , Magnaporthe/fisiologia , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/isolamento & purificação , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteômica
5.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717404

RESUMO

Rett syndrome (RTT), a neurodevelopmental disorder, is mainly caused by mutations in methyl CpG-binding protein 2 (MECP2), which has multiple functions such as binding to methylated DNA or interacting with a transcriptional co-repressor complex. It has been established that alterations in cyclin-dependent kinase-like 5 (CDKL5) or forkhead box protein G1 (FOXG1) correspond to distinct neurodevelopmental disorders, given that a series of studies have indicated that RTT is also caused by alterations in either one of these genes. We investigated the evolution and molecular features of MeCP2, CDKL5, and FOXG1 and their binding partners using phylogenetic profiling to gain a better understanding of their similarities. We also predicted the structural order-disorder propensity and assessed the evolutionary rates per site of MeCP2, CDKL5, and FOXG1 to investigate the relationships between disordered structure and other related properties with RTT. Here, we provide insight to the structural characteristics, evolution and interaction landscapes of those three proteins. We also uncovered the disordered structure properties and evolution of those proteins which may provide valuable information for the development of therapeutic strategies of RTT.


Assuntos
Simulação por Computador , Evolução Molecular , Fatores de Transcrição Forkhead/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Síndrome de Rett/genética , Animais , Cordados/genética , Ontologia Genética , Humanos , Mutação de Sentido Incorreto/genética , Especificidade de Órgãos , Filogenia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Frações Subcelulares/metabolismo
6.
Plant Methods ; 14: 56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002723

RESUMO

BACKGROUND: Small GTPases act as molecular switches that regulate various plant responses such as disease resistance, pollen tube growth, root hair development, cell wall patterning and hormone responses. Thus, to monitor their activation status within plant cells is believed to be the key step in understanding their roles. RESULTS: We have established a plant version of a Förster resonance energy transfer (FRET) probe called Ras and interacting protein chimeric unit (Raichu) that can successfully monitor activation of the rice small GTPase OsRac1 during various defence responses in cells. Here, we describe the protocol for visualizing spatiotemporal activity of plant Rac/ROP GTPase in living plant cells, transfection of rice protoplasts with Raichu-OsRac1 and acquisition of FRET images. CONCLUSIONS: Our protocol should be adaptable for monitoring activation for other plant small GTPases and protein-protein interactions for other FRET sensors in various plant cells.

7.
Front Plant Sci ; 5: 522, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25352853

RESUMO

In plants, sophisticated forms of immune systems have developed to cope with a variety of pathogens. Accumulating evidence indicates that Rac (also known as Rop), a member of the Rho family of small GTPases, is a key regulator of immunity in plants and animals. Like other small GTPases, Rac/Rop GTPases function as a molecular switch downstream of immune receptors by cycling between GDP-bound inactive and GTP-bound active forms in cells. Rac/Rop GTPases trigger various immune responses, thereby resulting in enhanced disease resistance to pathogens. In this review, we highlight recent studies that have contributed to our current understanding of the Rac/Rop family GTPases and the upstream and downstream proteins involved in plant immunity. We also compare the features of effector-triggered immunity between plants and animals, and discuss the in vivo monitoring of Rac/Rop activation.

8.
PLoS One ; 9(4): e93509, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24690921

RESUMO

Membrane traffic plays a crucial role in delivering proteins and lipids to their intracellular destinations. We previously identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. α-Taxilin is overexpressed in tumor tissues and interacts with polymerized tubulin, but the precise function of α-taxilin remains unclear. Receptor proteins on the plasma membrane are internalized, delivered to early endosomes and then either sorted to the lysosome for degradation or recycled back to the plasma membrane. In this study, we found that knockdown of α-taxilin induced the lysosomal degradation of transferrin receptor (TfnR), a well-known receptor which is generally recycled back to the plasma membrane after internalization, and impeded the recycling of transferrin. α-Taxilin was immunoprecipitated with sorting nexin 4 (SNX4), which is involved in the recycling of TfnR. Furthermore, knockdown of α-taxilin decreased the number and length of SNX4-positive tubular structures. We report for the first time that α-taxilin interacts with SNX4 and plays a role in the recycling pathway of TfnR.


Assuntos
Receptores da Transferrina/metabolismo , Transdução de Sinais , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Linhagem Celular , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Ligação Proteica , Transporte Proteico , Proteólise , Tubulina (Proteína)/metabolismo , Proteínas de Transporte Vesicular/genética
9.
Cell Struct Funct ; 37(2): 111-26, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22785156

RESUMO

Intracellular vesicle traffic plays an essential role in the establishment and maintenance of organelle identity and biosynthetic transport. We have identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. Recently, we have found that α-taxilin is over-expressed in malignant tissues including hepatocellular carcinoma and renal cell carcinoma. However, a precise role of α-taxilin in intracellular vesicle traffic and carcinogenesis remains unclear. Then, we first investigated here the intracellular distribution of α-taxilin in Hela cells. Immunofluorescence studies showed that α-taxilin distributes throughout the cytoplasm and exhibits a tubulo-vesicular pattern. Biochemical studies showed that α-taxilin is abundantly localized on intracellular components as a peripheral membrane protein. Moreover, we found that α-taxilin distributes in microtubule-dependent and syntaxin-independent manners, that α-taxilin directly binds to polymerized tubulin in vitro, and that N-ethylmaleimide but not brefeldin A affects the intracellular distribution of α-taxilin. These results indicate that α-taxilin is localized on intracellular components in a syntaxin-independent manner and that the α-taxilin-containing intracellular components are associated with the microtubule cytoskeleton and suggest that α-taxilin functions as a linker protein between the α-taxilin-containing intracellular components and the microtubule cytoskeleton.


Assuntos
Microtúbulos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Citoplasma/metabolismo , Etilmaleimida/química , Células HeLa , Humanos , Ligação Proteica , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Vesículas Transportadoras/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
10.
Microb Cell Fact ; 11: 82, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22709572

RESUMO

BACKGROUND: Reproduction and sustainability are important for future society, and bioprocesses are one technology that can be used to realize these concepts. However, there is still limited variation in bioprocesses and there are several challenges, especially in the operation of energy-requiring bioprocesses. As an example of a microbial platform for an energy-requiring bioprocess, we established a process that efficiently and enzymatically synthesizes 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase. This method consists of the coupling reactions of the reversible nucleoside degradation pathway and energy generation through the yeast glycolytic pathway. RESULTS: Using E. coli that co-express deoxyriboaldolase and phosphopentomutase, a high amount of 2'-deoxyribonucleoside was produced with efficient energy transfer under phosphate-limiting reaction conditions. Keeping the nucleobase concentration low and the mixture at a low reaction temperature increased the yield of 2'-deoxyribonucleoside relative to the amount of added nucleobase, indicating that energy was efficiently generated from glucose via the yeast glycolytic pathway under these reaction conditions. Using a one-pot reaction in which small amounts of adenine, adenosine, and acetone-dried yeast were fed into the reaction, 75 mM of 2'-deoxyinosine, the deaminated product of 2'-deoxyadenosine, was produced from glucose (600 mM), acetaldehyde (250 mM), adenine (70 mM), and adenosine (20 mM) with a high yield relative to the total base moiety input (83%). Moreover, a variety of natural dNSs were further synthesized by introducing a base-exchange reaction into the process. CONCLUSION: A critical common issue in energy-requiring bioprocess is fine control of phosphate concentration. We tried to resolve this problem, and provide the convenient recipe for establishment of energy-requiring bioprocesses. It is anticipated that the commercial demand for dNSs, which are primary metabolites that accumulate at very low levels in the metabolic pool, will grow. The development of an efficient production method for these compounds will have a great impact in both fields of applied microbiology and industry and will also serve as a good example of a microbial platform for energy-requiring bioprocesses.


Assuntos
Desoxiadenosinas/metabolismo , Metabolismo Energético , Escherichia coli/metabolismo , Microbiologia Industrial/métodos , Saccharomyces cerevisiae/metabolismo , Acetaldeído/metabolismo , Desoxiadenosinas/química , Escherichia coli/genética , Engenharia Genética , Glucose/metabolismo , Estrutura Molecular , Saccharomyces cerevisiae/genética
11.
PLoS One ; 7(6): e39269, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723981

RESUMO

Myosin light chain (MLC) phosphorylation plays important roles in various cellular functions such as cellular morphogenesis, motility, and smooth muscle contraction. MLC phosphorylation is determined by the balance between activities of Rho-associated kinase (Rho-kinase) and myosin phosphatase. An impaired balance between Rho-kinase and myosin phosphatase activities induces the abnormal sustained phosphorylation of MLC, which contributes to the pathogenesis of certain vascular diseases, such as vasospasm and hypertension. However, the dynamic principle of the system underlying the regulation of MLC phosphorylation remains to be clarified. Here, to elucidate this dynamic principle whereby Rho-kinase regulates MLC phosphorylation, we developed a mathematical model based on the behavior of thrombin-dependent MLC phosphorylation, which is regulated by the Rho-kinase signaling network. Through analyzing our mathematical model, we predict that MLC phosphorylation and myosin phosphatase activity exhibit bistability, and that a novel signaling pathway leading to the auto-activation of myosin phosphatase is required for the regulatory system of MLC phosphorylation. In addition, on the basis of experimental data, we propose that the auto-activation pathway of myosin phosphatase occurs in vivo. These results indicate that bistability of myosin phosphatase activity is responsible for the bistability of MLC phosphorylation, and the sustained phosphorylation of MLC is attributed to this feature of bistability.


Assuntos
Cadeias Leves de Miosina/metabolismo , Quinases Associadas a rho/metabolismo , Algoritmos , Linhagem Celular , Simulação por Computador , Ativação Enzimática , Humanos , Modelos Biológicos , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Transdução de Sinais
12.
N Biotechnol ; 26(1-2): 75-82, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19818317

RESUMO

Bacillus sphaericus AKU 229 was found to produce an acetaldehyde-tolerant and phosphorylated compound-tolerant phosphopentomutase useful for enzymatic 2'-deoxyribonucleoside production. The gene encoding the phosphopentomutase was cloned and expressed in Escherichia coli. The E. coli expressing B. sphaericus phosphopentomutase was an excellent catalyst as to production of 2'-deoxyribonucleoside in the presence of acetaldehyde and phosphorylated compounds such as fructose 1,6-diphosphate, and d-glyceraldehyde 3-phosphate, which are derived from glucose through glycolysis with yeast cells, and exist abundantly in the practical reaction mixture for enzymatic 2'-deoxyribonucleoside production.


Assuntos
Bacillus/enzimologia , Biotecnologia/métodos , Desoxirribonucleosídeos/biossíntese , Fosfotransferases/metabolismo , Acetaldeído/farmacologia , Sequência de Aminoácidos , Bacillus/efeitos dos fármacos , Bacillus/genética , Biocatálise/efeitos dos fármacos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Redes e Vias Metabólicas/efeitos dos fármacos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfotransferases/química , Fosfotransferases/genética , Alinhamento de Sequência , Transformação Genética/efeitos dos fármacos
13.
Biochimie ; 90(3): 525-33, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17988780

RESUMO

Three mutanase (alpha-1,3-glucanase)-producing microorganisms isolated from soil samples were identified as a relatives of Paenibacillus. A mutanase was purified to homogeneity from cultures of each, and the molecular masses of the purified enzymes were approximately 132, 141, and 141kDa, respectively. The corresponding three genes for mutanases were cloned by PCR using primers designed from each N-terminal amino acid sequence. Another mutanase-like gene from one strain was also cloned by PCR using primers designed from conserved amino acid sequences among known mutanases. Consequently, four mutanase-like genes were sequenced. The genes contained long open reading frames of 3411 to 3915bp encoding 1136 to 1304 amino acids. The deduced amino acid sequences of the mutanases showed relatively high similarity to those of a mutanase (E16590) from Bacillus sp. RM1 with 46.9% to 73.2% identity and an alpha-1,3-glucanase (AB248056) from Bacillus circulans KA-304 with 46.7% to 70.4% identity. Phylogenetic analysis based on the amino acid sequences of the enzymes showed bacterial mutanases form a new family between fungal mutanases (GH family 71) and Streptomycetes mycodextranases (GH family 87).


Assuntos
Bactérias/enzimologia , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/genética , Sequência de Aminoácidos , Bactérias/classificação , Glicosídeo Hidrolases/química , Dados de Sequência Molecular , Mutação , Filogenia , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
14.
Biotechnol Lett ; 28(12): 877-81, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16786272

RESUMO

A one-pot enzymatic synthesis of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase was established. Glycolysis by baker's yeast (Saccharomyces cerevisiae) generated ATP which was used to produce D: -glyceraldehyde 3-phosphate production from glucose via fructose 1,6-diphosphate. The D: -glyceraldehyde 3-phosphate produced was transformed to 2'-deoxyribonucleoside via 2-deoxyribose 5-phosphate and then 2-deoxyribose 1-phosphate in the presence of acetaldehyde and a nucleobase by deoxyriboaldolase, phosphopentomutase expressed in Escherichia coli, and a commercial nucleoside phosphorylase. About 33 mM 2'-deoxyinosine was produced from 600 mM glucose, 333 mM acetaldehyde and 100 mM adenine in 24 h. 2'-Deoxyinosine was produced from adenine due to the adenosine deaminase activity of E. coli transformants.


Assuntos
Desoxirribonucleosídeos/biossíntese , Escherichia coli/metabolismo , Saccharomyces/enzimologia , Transformação Bacteriana/genética , Acetaldeído/metabolismo , Biotecnologia/métodos , Escherichia coli/genética , Glucose/metabolismo , Pentosiltransferases/farmacologia , Fosfotransferases/metabolismo , Ribosemonofosfatos/metabolismo , Transformação Bacteriana/fisiologia
15.
Biosci Biotechnol Biochem ; 70(6): 1371-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16794316

RESUMO

2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.


Assuntos
Acetaldeído/metabolismo , Álcoois/metabolismo , Aldeído Liases/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo , Ribosemonofosfatos/biossíntese , Saccharomyces cerevisiae/metabolismo , Acetaldeído/química , Escherichia coli/genética , Fermentação , Frutosedifosfatos/biossíntese , Glucose/química , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Estrutura Molecular , Fosfatos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Temperatura
16.
Appl Microbiol Biotechnol ; 71(5): 615-21, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16283293

RESUMO

2'-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2'-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2'-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2'-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker's yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5'-triphosphate generated from adenosine 5'-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via D-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2'-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2'-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2'-deoxyribonucleoside synthesis. 2'-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.


Assuntos
Acetaldeído/metabolismo , Adenina/metabolismo , Biotecnologia/métodos , Desoxirribonucleosídeos/metabolismo , Glucose/metabolismo , Ribosemonofosfatos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Glicólise , Inosina/análogos & derivados , Inosina/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
17.
Mol Cell Biol ; 25(22): 9920-35, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16260607

RESUMO

A neuron has two types of highly polarized cell processes, the single axon and multiple dendrites. One of the fundamental questions of neurobiology is how neurons acquire such specific and polarized morphologies. During neuronal development, various actin-binding proteins regulate dynamics of actin cytoskeleton in the growth cones of developing axons. The regulation of actin cytoskeleton in the growth cones is thought to be involved in axon outgrowth and axon-dendrite specification. However, it is largely unknown which actin-binding proteins are involved in axon-dendrite specification and how they are transported into the developing axons. We have previously reported that collapsin response mediator protein 2 (CRMP-2) plays a critical role in axon outgrowth and axon-dendrite specification (N. Inagaki, K. Chihara, N. Arimura, C. Menager, Y. Kawano, N. Matsuo, T. Nishimura, M. Amano, and K. Kaibuchi, Nat. Neurosci. 4:781-782, 2001). Here, we found that CRMP-2 interacted with the specifically Rac1-associated protein 1 (Sra-1)/WASP family verprolin-homologous protein 1 (WAVE1) complex, which is a regulator of actin cytoskeleton. The knockdown of Sra-1 and WAVE1 by RNA interference canceled CRMP-2-induced axon outgrowth and multiple-axon formation in cultured hippocampal neurons. We also found that CRMP-2 interacted with the light chain of kinesin-1 and linked kinesin-1 to the Sra-1/WAVE1 complex. The knockdown of CRMP-2 and kinesin-1 delocalized Sra-1 and WAVE1 from the growth cones of axons. These results suggest that CRMP-2 transports the Sra-1/WAVE1 complex to axons in a kinesin-1-dependent manner and thereby regulates axon outgrowth and formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Axônios/metabolismo , Cinesinas/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Células Cultivadas , Cromatografia de Afinidade , Citoesqueleto/metabolismo , DNA Complementar/metabolismo , Dendritos/metabolismo , Glutationa Transferase/metabolismo , Hipocampo/metabolismo , Humanos , Imunoprecipitação , Insetos , Peptídeos e Proteínas de Sinalização Intercelular , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Neurônios/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Suínos , Transfecção
18.
Appl Environ Microbiol ; 69(7): 3791-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12839746

RESUMO

The gene encoding a deoxyriboaldolase (DERA) was cloned from the chromosomal DNA of Klebsiella pneumoniae B-4-4. This gene contains an open reading frame consisting of 780 nucleotides encoding 259 amino acid residues. The predicted amino acid sequence exhibited 94.6% homology with the sequence of DERA from Escherichia coli. The DERA of K. pneumoniae was expressed in recombinant E. coli cells, and the specific activity of the enzyme in the cell extract was as high as 2.5 U/mg, which was threefold higher than the specific activity in the K. pneumoniae cell extract. One of the E. coli transformants, 10B5/pTS8, which had a defect in alkaline phosphatase activity, was a good catalyst for 2-deoxyribose 5-phosphate (DR5P) synthesis from glyceraldehyde 3-phosphate and acetaldehyde. The E. coli cells produced DR5P from glucose and acetaldehyde in the presence of ATP. Under the optimal conditions, 100 mM DR5P was produced from 900 mM glucose, 200 mM acetaldehyde, and 100 mM ATP by the E. coli cells. The DR5P produced was further transformed to 2'-deoxyribonucleoside through coupling the enzymatic reactions of phosphopentomutase and nucleoside phosphorylase. These results indicated that production of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase is possible with the addition of a suitable energy source, such as ATP.


Assuntos
Acetaldeído/metabolismo , Aldeído Liases/metabolismo , Desoxirribonucleosídeos/biossíntese , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/metabolismo , Ribosemonofosfatos/biossíntese , Aldeído Liases/química , Aldeído Liases/genética , Sequência de Aminoácidos , Sequência de Bases , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Transformação Bacteriana
19.
Biosci Biotechnol Biochem ; 67(4): 933-6, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12784646

RESUMO

2-Deoxyribose 5-phosphate was produced from acetaldehyde and dihydroxyacetone phosphate via D-glyceraldehyde 3-phosphate by Klebsiella pneumoniae B-4-4 through deoxyriboaldolase- and triosephosphate isomerase-catalyzing reactions. Under the optimum conditions, 98.7 mM 2-deoxyribose 5-phosphate was produced from 200 mM acetaldehyde and 117 mM dihydroxyacetone phosphate in 2 h with a molar yield of 84%. The 2-deoxyriobse 5-phosphate produced was directly transformed to 2'-deoxyribonucleoside by phosphopentomutase- and nucleoside phosphorylase-catalyzing reactions.


Assuntos
Desoxirribonucleosídeos/biossíntese , Klebsiella pneumoniae/metabolismo , Ribosemonofosfatos/biossíntese , Acetaldeído/metabolismo , Pentosiltransferases/metabolismo , Fosfotransferases/metabolismo , Fosfatos Açúcares/metabolismo , Trioses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...