Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(13): 5143-5149, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38509446

RESUMO

Isotope imaging is commonly used to investigate the localization of trace elements and their isotopes. In situ noble gas analysis of meteorites revealed the distribution of primordial noble gases that were trapped in the building blocks of asteroids and planets during the early stage of the solar system evolution. Solar wind noble gases are among the primordial gases present in meteorites and were trapped through exposure to solar wind. Micrometer-resolution in situ noble gas analysis has not been achieved due to the lack of sensitivity and spatial resolution. The microscale imaging technique is crucial for identifying the carrier phase of the solar wind noble gases. We have developed 4He isotope imaging utilizing secondary neutral mass spectrometry with strong field postionization. This technique achieved a lateral resolution of 2 µm and a 4He detection limit of 2 × 1017 cm-3. This development allows for the study of a solar wind gas-rich meteorite, Northwest Africa 801 carbonaceous chondrite, with micrometer resolution. The solar wind 4He carriers are fine-grained particles and are sparsely scattered in the matrix region.

2.
Anal Chem ; 96(1): 170-178, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38155534

RESUMO

Characterization of the elemental distribution of samples with rough surfaces has been strongly desired for the analysis of various natural and artificial materials. Particularly for pristine and rare analytes with micrometer sizes embedded on specimen surfaces, non-invasive and matrix effect-free analysis is required without surface polishing treatment. To satisfy these requirements, we proposed a new method employing the sequential combination of two imaging modalities, i.e., microenergy-dispersive X-ray fluorescence (micro-XRF) and Raman micro-spectroscopy. The applicability of the developed method is tested by the quantitative analysis of cation composition in micrometer-sized carbonate grains on the surfaces of intact particles sampled directly from the asteroid Ryugu. The first step of micro-XRF imaging enabled a quick search for the sparsely scattered and micrometer-sized carbonates by the codistributions of Ca2+ and Mn2+ on the Mg2+- and Fe2+-rich phyllosilicate matrix. The following step of Raman micro-spectroscopy probed the carbonate grains and analyzed their cation composition (Ca2+, Mg2+, and Fe2+ + Mn2+) in a matrix effect-free manner via the systematic Raman shifts of the lattice modes. The carbonates were basically assigned to ferroan dolomite bearing a considerable amount of Fe2+ + Mn2+ at around 10 atom %. These results are in good accordance with the assignments reported by scanning electron microscopy-energy-dispersive X-ray spectroscopy, where the thin-sectioned and surface-polished Ryugu particles were applicable. The proposed method requires neither sectioning nor surface polishing; hence, it can be applied to the remote sensing apparatus on spacecrafts and planetary rovers. Furthermore, the non-invasive and matrix effect-free characterization will provide a reliable analytical tool for quantitative analysis of the elemental distribution on the samples with surface roughness and chemical heterogeneity at a micrometer scale, such as art paintings, traditional crafts with decorated shapes, as well as sands and rocks with complex morphologies in nature.

3.
Sci Adv ; 9(45): eadi7048, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939187

RESUMO

Studies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for mildly soluble Cr are highly variable in Ryugu and CI chondrites, whereas those of Ti are relatively uniform. This variation in Cr isotope ratios is most likely due to physicochemical fractionation between 54Cr-rich presolar nanoparticles and Cr-bearing secondary minerals at the millimeter-scale in the bulk samples, likely due to extensive aqueous alteration in their parent bodies that occurred [Formula: see text] after Solar System birth. In contrast, Ti isotopes were marginally affected by this process. Our results show that isotopic heterogeneities in asteroids are not all nebular or accretionary in nature but can also reflect element redistribution by water.

4.
Sci Adv ; 9(28): eadh1003, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450600

RESUMO

Preliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration. The 5 to 10 times higher abundances of presolar SiC (~235 ppm), N-rich organic matter, organics with N isotopic anomalies (1.2%), and organics with C isotopic anomalies (0.2%) in the primitive clasts compared to bulk Ryugu suggest that the clasts formed in a unique part of the protoplanetary disk enriched in presolar materials. These clasts likely represent previously unsampled outer solar system material that accreted onto Ryugu after aqueous alteration ceased, consistent with Ryugu's rubble pile origin.


Assuntos
Carbono , Meteoroides , Carbono/análise , Sistema Solar , Silicatos
5.
Science ; 379(6634): eabn7850, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35679354

RESUMO

Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples. The samples are mainly composed of materials similar to those of carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37° ± 10°C, about [Formula: see text] million (statistical) or [Formula: see text] million (systematic) years after the formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles that of the Sun's photosphere than other natural samples do.

6.
Sci Adv ; 8(50): eade2067, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525483

RESUMO

The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: 16O-rich (associated with refractory inclusions) and 16O-poor (associated with chondrules). Both the 16O-rich and 16O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. The abundance ratios of the 16O-rich to 16O-poor minerals in Ryugu and CI chondrites are higher than in other carbonaceous chondrite groups but are similar to that of comet 81P/Wild2, suggesting that Ryugu and CI chondrites accreted in the outer Solar System closer to the accretion region of comets.

7.
Sci Adv ; 8(46): eadd8141, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36264823

RESUMO

Little is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby planetesimals and ejected some inward to be implanted into the Main Belt. In this framework, most carbonaceous chondrites may have originated from regions around the birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar System to excitation by Uranus and Neptune.

8.
Adv Healthc Mater ; 10(3): e2001731, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191665

RESUMO

Tough double network (DN) hydrogels are promising substitutes of soft supporting tissues such as cartilage and ligaments. For such applications, it is indispensable to robustly fix the hydrogels to bones with medically feasible methods. Recently, robustly bonding the DN hydrogels to defected bones of rabbits in vivo has been proved successful. The low crystalline hydroxyapatite (HAp) of calcium-phosphate-hydroxide salt coated on the surface layer of the DN hydrogels induced spontaneous osteogenesis penetrating into the semi-permeable hydrogels to form a gel/bone composite layer. In this work, the 44 Ca isotope-doped HAp/DN hydrogel is implanted in a defect of rabbit femoral bone and the dynamic osteogenesis process at the gel/bone interface is analyzed by tracing the calcium isotope ratio using isotope microscopy. The synthetic HAp hybridized on the surface layer of DN gel dissolves rapidly in the first two weeks by inflammation, and then the immature bone with a gradient structure starts to form in the gel region, reutilizing the dissolved Ca ions. These results reveal, for the first time, that synthetic HAp is reutilized for osteogenesis. These facts help to understand the lifetime of bone absorbable materials and to elucidate the mechanism of spontaneous, non-toxic, but strong fixation of hydrogels to bones.


Assuntos
Hidrogéis , Osteogênese , Animais , Osso e Ossos , Durapatita , Isótopos , Coelhos
9.
Nat Commun ; 11(1): 1289, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157094

RESUMO

Diogenites are a group of meteorites that are derived from the interior of the largest protoplanet Vesta. They provide a unique opportunity to understanding together the internal structure and dynamic evolution of this protoplanet. Northwest Africa (NWA) 8321 was suggested to be an unbrecciated noritic diogenite meteorite, which is confirmed by our oxygen and chromium isotopic data. Here, we find that olivine in this sample has been partly replaced by orthopyroxene, troilite, and minor metal. The replacement texture of olivine is unambiguous evidence of sulfur-involved metasomatism in the interior of Vesta. The presence of such replacement texture suggests that in NWA 8321, the olivine should be of xenolith origin while the noritic diogenite was derived from partial melting of pre-existing rocks and had crystallized in the interior of Vesta. The post-Rheasilvia craters in the north-polar region on Vesta could be the potential source for NWA 8321.

10.
Science ; 333(6046): 1116-9, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21868668

RESUMO

Meteorite studies suggest that each solar system object has a unique oxygen isotopic composition. Chondrites, the most primitive of meteorites, have been believed to be derived from asteroids, but oxygen isotopic compositions of asteroids themselves have not been established. We measured, using secondary ion mass spectrometry, oxygen isotopic compositions of rock particles from asteroid 25143 Itokawa returned by the Hayabusa spacecraft. Compositions of the particles are depleted in (16)O relative to terrestrial materials and indicate that Itokawa, an S-type asteroid, is one of the sources of the LL or L group of equilibrated ordinary chondrites. This is a direct oxygen-isotope link between chondrites and their parent asteroid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...