Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 180: 551-6, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27322817

RESUMO

In this work, we propose a novel approach to dye decomposition under subcritical water conditions using a continuous-flow tubular reactor coated with thin layer of PdO as a catalyst. Remazole Brilliant Blue R was used as an example of synthetic dyes. Hydrogen peroxide was used as an environmental-friendly oxidant as it leaves no residues after treatment. The effect of temperature, pressure and dye concentration on total organic carbon (TOC) removal were studied. 99.9% of TOC removal was achieved at 300 °C and 10 MPa pressure within a short residence time of 3.2 s. This method provided an efficient and rapid process that has a potential for treating a wide range of textile wastewaters.


Assuntos
Antraquinonas/química , Corantes/química , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Oxidantes/química , Pressão , Temperatura , Eliminação de Resíduos Líquidos/métodos
2.
Beilstein J Org Chem ; 9: 1156-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23843908

RESUMO

The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd-Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO) surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2) was observed during the reaction, although hydrogen (H2) was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

3.
J Oleo Sci ; 59(10): 557-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20877149

RESUMO

Novel micro swirl mixers were developed to synthesize nanoparticles, and the effect of their mixing performance on the characteristics of the synthesized nanoparticles was determined. The results were compared with those obtained using simple T-shaped mixers under the same reaction conditions. The synthesis of NiO, whose characteristics depend on the mixing performance of the mixer, was chosen as a model reaction. Initial investigations highlighted that the average particle size decreased from 32 to 23 to 20 nm as the inner diameter of the swirl mixers was decreased from 3.2 mm (Swirl mixer, SM-3.2) to 0.8 mm (Micro swirl mixer, MSM-0.8) to 0.5 mm (Micro swirl mixer, MSM-0.5), respectively. On the other hand, a similar decrease in the average particle size from 34 to 20 nm was observed with a decrease in the inner diameter of the T-shaped mixers from 1.3 mm (Tee union, T-1.3) to 0.3 mm (Micro tee union, T-0.3), respectively. Further, narrow particle size distributions were observed with a decrease in the inner diameter of each mixer. Furthermore, a computational fluid dynamics (CFD) simulation indicated an excellent mixing mechanism, which contributed to the improvement in the heating rate and the formation of nanoparticles of smaller size with a narrow particle size distribution. The result presented here indicates that the micro swirl mixers produce high-quality metal oxide nanoparticles. The size of the obtained particles with improved size distributions was comparable to that of the particles obtained using the T-shaped mixers, although the inner diameter of the swirl mixers was larger. Therefore, preliminary evidence suggests that the swirl flow mixers have the ability to produce rapid and homogeneous fluid mixing, thus controlling the particle size.


Assuntos
Microfluídica/instrumentação , Nanopartículas/química , Níquel/química , Temperatura , Desenho de Equipamento , Microfluídica/métodos , Simulação de Dinâmica Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...