Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 712261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616273

RESUMO

Perinatal exposure to Bisphenol A (BPA) at a very low dose may modulate the development of synapses of the hippocampus during growth to adulthood. Here, we demonstrate that perinatal exposure to 30 µg BPA/kg per mother's body weight/day significantly altered the dendritic spines of the grownup rat hippocampus. The density of the spine was analyzed by imaging of Lucifer Yellow-injected CA1 glutamatergic neurons in adult hippocampal slices. In offspring 3-month male hippocampus, the total spine density was significantly decreased by BPA exposure from 2.26 spines/µm (control, no BPA exposure) to 1.96 spines/µm (BPA exposure). BPA exposure considerably changed the normal 4-day estrous cycle of offspring 3-month females, resulting in a 4∼5 day estrous cycle with 2-day estrus stages in most of the subjects. In the offspring 3-month female hippocampus, the total spine density was significantly increased by BPA exposure at estrus stage from 2.04 spines/µm (control) to 2.25 spines/µm (BPA exposure). On the other hand, the total spine density at the proestrus stage was moderately decreased from 2.33 spines/µm (control) to 2.19 spines/µm (BPA exposure). Thus, after the perinatal exposure to BPA, the total spine density in males became lower than that in females. Concerning the BPA effect on the morphology of spines, the large-head spine was significantly changed with its significant decrease in males and moderate change in females.

2.
Front Cell Neurosci ; 13: 534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866827

RESUMO

Neuroactive estrogenic and androgenic steroids influence synaptic transmission, finely modulating synaptic plasticity in several brain regions including the hippocampus. While estrogens facilitate long-term potentiation (LTP), androgens are involved in the induction of long-term depression (LTD) and depotentiation (DP) of synaptic transmission. To examine sex neurosteroid-dependent LTP and LTD in single cells, patch-clamp recordings from hippocampal CA1 pyramidal neurons of male rats and selective antagonists for estrogen receptors (ERs) and androgen (AR) receptors were used. LTP induced by high-frequency stimulation (HFS) depended on activation of ERs since it was prevented by the ER antagonist ICI 182,780 in most of the neurons. Application of the selective antagonists for ERα (MPP) or ERß (PHTPP) caused a reduction of the LTP amplitude, while these antagonists in combination, prevented LTP completely. LTP was never affected by blocking AR with the specific antagonist flutamide. Conversely, LTD and DP, elicited by low-frequency stimulation (LFS), were impeded by flutamide, but not by ICI 182,780, in most neurons. In few cells, LTD was even reverted to LTP by flutamide. Moreover, the combined application of both ER and AR antagonists completely prevented both LTP and LTD/DP in the same neuron. The current study demonstrates that the activation of ERs is necessary for inducing LTP in hippocampal pyramidal neurons, whereas the activation of ARs is required for LTD and DP. Moreover, both estrogen- and androgen-dependent LTP and LTD can be expressed in the same pyramidal neurons, suggesting that the activation of sex neurosteroids signaling pathways is responsible for bidirectional synaptic plasticity.

3.
Cereb Cortex ; 29(6): 2499-2508, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850790

RESUMO

d-Aspartate (d-Asp), the stereoisomer of l-aspartate, has a role in memory function in rodents. However, the mechanism of the effect of d-Asp has not been fully understood. In this study, we hypothesized that ingested d-Asp directly reaches the hippocampal tissues via the blood circulation and modifies the functional connectivity between hippocampus and other regions through spinogenesis in hippocampal CA1 neurons. The spinogenesis induced by the application of d-Asp was investigated using rat acute hippocampal slices. The density of CA1 spines was increased following 21 and 100 µM d-Asp application. The nongenomic spine increase pathway involved LIM kinase. In parallel to the acute slice study, brain activation was investigated in awake rats using functional MRI following the intragastric administration of 5 mM d-Asp. Furthermore, the concentration of d-Asp in the blood serum and hippocampus was significantly increased 15 min after intragastric administration of d-Asp. A functional connectivity by awake rat fMRI demonstrated increased slow-frequency synchronization in the hippocampus and other regions, including the somatosensory cortex, striatum, and the nucleus accumbens, 10-20 min after the start of d-Asp administration. These results suggest that ingested d-Asp reaches the brain through the blood circulation and modulates hippocampal neural networks through the modulation of spines.


Assuntos
Ácido D-Aspártico/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Animais , Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Wistar
4.
Front Neurosci ; 12: 282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765299

RESUMO

Dendritic spine is a small membranous protrusion from a neuron's dendrite that typically receives input from an axon terminal at the synapse. Memories are stored in synapses which consist of spines and presynapses. Rapid modulations of dendritic spines induced by hippocampal sex steroids, including dihydrotestosterone (DHT), testosterone (T), and estradiol (E2), are essential for synaptic plasticity. Molecular mechanisms underlying the rapid non-genomic modulation through synaptic receptors of androgen (AR) and estrogen (ER) as well as its downstream kinase signaling, however, have not been well understood. We investigated the possible involvement of Src tyrosine kinase in rapid changes of dendritic spines in response to androgen and estrogen, including DHT, T, and E2, using hippocampal slices from adult male rats. We found that the treatments with DHT (10 nM), T (10 nM), and E2 (1 nM) increased the total density of spines by ~1.22 to 1.26-fold within 2 h using super resolution confocal imaging of Lucifer Yellow-injected CA1 pyramidal neurons. We examined also morphological changes of spines in order to clarify differences between three sex steroids. From spine head diameter analysis, DHT increased middle- and large-head spines, whereas T increased small- and middle-head spines, and E2 increased small-head spines. Upon application of Src tyrosine kinase inhibitor, the spine increases induced through DHT, T, and E2 treatments were completely blocked. These results imply that Src kinase is essentially involved in sex steroid-induced non-genomic modulation of the spine density and morphology. These results also suggest that rapid effects of exogenously applied androgen and estrogen can occur in steroid-depleted conditions, including "acute" hippocampal slices and the hippocampus of gonadectomized animals.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29740398

RESUMO

The brain is not only the target of steroid hormones but also is able to locally synthesize steroids de novo. Evidence of the local production of steroids in the brain has been accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, non-human primates, and humans. In this review, we mainly focus on the local production of sex steroids in the hippocampal neurons of adult rodents (rats and mice), a center for learning and memory. From the data of the hippocampus of adult male rats, hippocampal principal neurons [pyramidal cells in CA1-CA3 and granule cells in dentate gyrus (DG)] have a complete system for biosynthesis of sex steroids. Liquid chromatography with tandem-mass-spectrometry (LC-MS/MS) enabled us to accurately determine the levels of hippocampal sex steroids including 17ß-estradiol (17ß-E2), testosterone (T), and dihydrotestosterone (DHT), which are much higher than those in blood. Next, we review the steroid synthesis in the hippocampus of female rats, since previous knowledge had been biased toward the data from males. Recently, we clarified that the levels of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate determination of hippocampal steroids at each stage of the estrous cycle is of importance for providing the account for the fluctuation of female hippocampal functions, including spine density, long-term potentiation (LTP) and long-term depression (LTD), and learning and memory. These functional fluctuations in female had been attributed to the level of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine density in CA1 of adult female hippocampus correlates with the levels of hippocampal progesterone and 17ß-E2. Finally, we introduce the direct evidence of the role of hippocampus-synthesized steroids in hippocampal function including neurogenesis, LTP, and memory consolidation. Mild exercise (2 week of treadmill running) elevated synthesis of DHT in the hippocampus, but not in the testis, of male rats, resulting in enhancement of neurogenesis in DG. Concerning synaptic plasticity, hippocampus-synthesized E2 is required for LTP induction, whereas hippocampus-synthesized DHT is required for LTD induction. Furthermore, hippocampus-synthesized E2 is involved in memory consolidation tested by object recognition and object placement tasks, both of which are hippocampus-dependent.

6.
Cancer Sci ; 109(4): 1230-1238, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29369461

RESUMO

Intratumoral androgen biosynthesis has been recognized as an essential factor of castration-resistant prostate cancer. The present study investigated the effects of curcumin on the inhibition of intracrine androgen synthesis in prostate cancer. Human prostate cancer cell lines, LNCaP and 22Rv1 cells were incubated with or without curcumin after which cell proliferation was measured at 0, 24, 48 and 72 hours, respectively. Prostate tissues from the transgenic adenocarcinoma of the mouse prostate (TRAMP) model were obtained after 1-month oral administration of 200 mg/kg/d curcumin. Testosterone and dihydrotestosterone concentrations in LNCaP prostate cancer cells were determined through LC-MS/MS assay. Curcumin inhibited cell proliferation and induced apoptosis of prostate cancer cells in a dose-dependent manner. Curcumin decreased the expression of steroidogenic acute regulatory proteins, CYP11A1 and HSD3B2 in prostate cancer cell lines, supporting the decrease of testosterone production. After 1-month oral administration of curcumin, Aldo-Keto reductase 1C2 (AKR1C2) expression was elevated. Simultaneously, decreased testosterone levels in the prostate tissues were observed in the TRAMP mice. Meanwhile, curcumin treatments considerably increased the expression of AKR1C2 in prostate cancer cell lines, supporting the decrease of dihydrotestosterone. Taken together, these results suggest that curcumin's natural bioactive compounds could have potent anticancer properties due to suppression of androgen production, and this could have therapeutic effects on prostate cancer.


Assuntos
Curcumina/farmacologia , Hidroxiesteroide Desidrogenases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Testosterona/metabolismo , Androgênios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Di-Hidrotestosterona/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Progesterona Redutase/metabolismo , Próstata/efeitos dos fármacos , Próstata/metabolismo , Receptores Androgênicos/metabolismo
7.
PLoS One ; 12(12): e0189075, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211795

RESUMO

Relaxation and excitation are components of the effects of music listening. The tempo of music is often considered a critical factor when determining these effects: listening to slow-tempo and fast-tempo music elicits relaxation and excitation, respectively. However, the chemical bases that underlie these relaxation and excitation effects remain unclear. Since parasympathetic and sympathetic nerve activities are facilitated by oxytocin and glucocorticoid, respectively, we hypothesized that listening to relaxing slow-tempo and exciting fast-tempo music is accompanied by increases in the oxytocin and cortisol levels, respectively. We evaluated the change in the salivary oxytocin and cortisol levels of participants listening to slow-tempo and fast-tempo music sequences. We measured the heart rate (HR) and calculated the heart rate variability (HRV) to evaluate the strength of autonomic nerve activity. After listening to a music sequence, the participants rated their arousal and valence levels. We found that both the salivary oxytocin concentration and the high frequency component of the HRV (HF) increased and the HR decreased when a slow-tempo music sequence was presented. The salivary cortisol level decreased and the low frequency of the HRV (LF) to HF ratio (LF/HF) increased when a fast-tempo music sequence was presented. The ratio of the change in the oxytocin level was correlated with the change in HF, LF/HF and HR, whereas that in the cortisol level did not show any correlation with indices of autonomic nerve activity. There was no correlation between the change in oxytocin level and self-reported emotions, while the change in cortisol level correlated with the arousal level. These findings suggest that listening to slow-tempo and fast-tempo music is accompanied by an increase in the oxytocin level and a decrease in the cortisol level, respectively, and imply that such music listening-related changes in oxytocin and cortisol are involved in physiological relaxation and emotional excitation, respectively.


Assuntos
Hidrocortisona/análise , Música , Ocitocina/análise , Saliva/química , Adulto , Cromatografia Líquida , Humanos , Masculino , Espectrometria de Massas em Tandem , Adulto Jovem
8.
Sci Rep ; 7(1): 6268, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740157

RESUMO

Several studies have shown that docosahexaenoic acid (DHA) attenuates epileptic seizures; however, the molecular mechanism by which it achieves this effect is still largely unknown. DHA stimulates the retinoid X receptor, which reportedly regulates the expression of cytochrome P450 aromatase (P450arom). This study aimed to clarify how DHA suppresses seizures, focusing on the regulation of 17ß-estradiol synthesis in the brain. Dietary supplementation with DHA increased not only the expression of P450arom, but also 17ß-estradiol in the cerebral cortex. While DHA did not affect the duration or scores of the seizures induced by pentylenetetrazole, DHA significantly prolonged the seizure latency. A P450arom inhibitor, letrozole, reduced 17ß-estradiol levels and completely suppressed the elongation of seizure latency elicited by DHA. These results suggest that DHA delays the onset of seizures by promoting the synthesis of 17ß-estradiol in the brain. DHA upregulated the expression of anti-oxidative enzymes in the cerebral cortex. The oxidation in the cerebral cortex induced by pentylenetetrazole was significantly attenuated by DHA, and letrozole completely inhibited this suppressive action. Thus, the anti-oxidative effects of 17ß-estradiol may be involved in the prevention of seizures mediated by DHA. This study revealed that 17ß-estradiol in the brain mediated the physiological actions of DHA.


Assuntos
Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Estradiol/biossíntese , Letrozol/farmacologia , Pentilenotetrazol/toxicidade , Convulsões/prevenção & controle , Animais , Inibidores da Aromatase/farmacologia , Encéfalo/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Convulsões/induzido quimicamente , Convulsões/metabolismo
9.
Hum Cell ; 30(2): 133-139, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28093676

RESUMO

There is now mounting evidence that the aryl hydrocarbon receptor (AhR) plays an important role in physiologic responses such as development, cell cycle regulation, immune function and also malignant transformation in various tissues. The strong nuclear AhR expression is observed in the invasive phenotype, and an elevated nuclear AhR expression is associated with a poor prognosis of human prostate cancer. On the other hand, there are conflicting results that the AhR deficiency results in increased susceptibility to prostate tumors in mouse model. In the present study, we investigated AhR expression and its role in the growth and invasiveness of human prostate cancer cells. The AhR protein expression was detected in prostate cancer cell lines and human prostate cancer tissues. A small interfering RNA targeting AhR, constitutive active AhR expression vector, and AhR agonist and antagonist were used to moderate its expression and signaling. The induction of AhR signaling attenuated invasiveness of prostate cancer cells without affecting the cellular growth rate. These results suggest that AhR signaling in prostate cancer cells facilitates invasion of these cells, and modulation with this signaling can be a potential therapeutic target of invasive tumors.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores de Hidrocarboneto Arílico/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Predisposição Genética para Doença/genética , Humanos , Masculino , Invasividade Neoplásica/genética , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética
11.
Horm Behav ; 74: 149-56, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26122288

RESUMO

This article is part of a Special Issue "Estradiol and cognition". Estradiol (E2) is locally synthesized within the hippocampus and the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation. The molecular mechanisms of modulation through the synaptic estrogen receptor (ER) and its downstream signaling, however, are largely unknown in the dentate gyrus (DG). We investigated the E2-induced modulation of dendritic spines in male adult rat hippocampal slices by imaging Lucifer Yellow-injected DG granule cells. Treatments with 1 nM E2 increased the density of spines by approximately 1.4-fold within 2h. Spine head diameter analysis showed that the density of middle-head spines (0.4-0.5 µm) was significantly increased. The E2-induced spine density increase was suppressed by blocking Erk MAPK, PKA, PKC and LIMK. These suppressive effects by kinase inhibitors are not non-specific ones because the GSK-3ß antagonist did not inhibit E2-induced spine increase. The ER antagonist ICI 182,780 also blocked the E2-induced spine increase. Taken together, these results suggest that E2 rapidly increases the density of spines through kinase networks that are driven by synaptic ER.


Assuntos
Espinhas Dendríticas/fisiologia , Giro Denteado/citologia , Estradiol/fisiologia , Proteínas Quinases/fisiologia , Animais , Contagem de Células , Espinhas Dendríticas/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar
12.
J Endocrinol ; 226(2): M13-27, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26034071

RESUMO

The corticosterone (CORT) level changes along the circadian rhythm. Hippocampus is sensitive to CORT, since glucocorticoid receptors are highly expressed. In rat hippocampus fixed in a living state every 3 h, we found that the dendritic spine density of CA1 pyramidal neurons increased upon waking (within 3 h), as compared with the spine density in the sleep state. Particularly, the large-head spines increased. The observed change in the spine density may be due to the change in the hippocampal CORT level, since the CORT level at awake state (∼30 nM) in cerebrospinal fluid was higher than that at sleep state (∼3 nM), as observed from our earlier study. In adrenalectomized (ADX) rats, such a wake-induced increase of the spine density disappeared. S.c. administration of CORT into ADX rats rescued the decreased spine density. By using isolated hippocampal slices, we found that the application of 30 nM CORT increased the spine density within 1 h and that the spine increase was mediated via PKA, PKC, ERK MAPK, and LIMK signaling pathways. These findings suggest that the moderately rapid increase of the spine density on waking might mainly be caused by the CORT-driven kinase networks.


Assuntos
Ritmo Circadiano/fisiologia , Corticosterona/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/citologia , Neurônios/citologia , Animais , Forma Celular/fisiologia , Corticosterona/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
13.
J Physiol Sci ; 65(3): 253-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25715777

RESUMO

We investigated age-induced changes in mRNA expression profiles of sex-steroidogenic enzymes and sex-steroid receptors in 3-, 12-, and 24-month-old male rat brain subregions [cerebral cortex (CC), hypothalamus (Hy) and cerebellum (CL)]. In many cases, the expression levels of mRNA decreased with age for androgen synthesis enzyme systems, including Cyp17a1, Hsd17b and Srd5a in the CC and CL, but not in the Hy. Estradiol synthase Cyp19a1 did not show age-induced decline in the Hy, and nearly no expression of Cyp19a1 was observed in the CC and CL over 3-24 m. Androgen receptor Ar increased in the Hy but decreased in the CC with age. Estrogen receptor Esr1 increased in the CC and Hy, and did not change in the CL with age. Esr2 did not change in the CC and Hy, but decreased in the CL with age. As a comparison, age-induced changes of brain-derived neurotrophic factor mRNA were also investigated.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Hormônios Esteroides Gonadais/biossíntese , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Envelhecimento/genética , Animais , Aromatase/genética , Aromatase/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Hipotálamo/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo
14.
Brain Res ; 1621: 147-61, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25595055

RESUMO

Estradiol (E2) is locally synthesized within the hippocampus in addition to the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation. Molecular mechanisms of modulation through synaptic estrogen receptor (ER) and its downstream signaling, however, have been still unknown. We investigated induction of LTP by the presence of E2 upon weak theta burst stimulation (weak-TBS) in CA1 region of adult male hippocampus. Since only weak-TBS did not induce full-LTP, weak-TBS was sub-threshold stimulation. We observed LTP induction by the presence of E2, after incubation of hippocampal slices with 10nM E2 for 30 min, upon weak-TBS. This E2-induced LTP was blocked by ICI, an ER antagonist. This E2-LTP induction was inhibited by blocking Erk MAPK, PKA, PKC, PI3K, NR2B and CaMKII, individually, suggesting that Erk MAPK, PKA, PKC, PI3K and CaMKII may be involved in downstream signaling for activation of NMDA receptors. Interestingly, dihydrotestosterone suppressed the E2-LTP. We also investigated rapid changes of dendritic spines (=postsynapses) in response to E2, using hippocampal slices from adult male rats. We found 1nM E2 increased the density of spines by approximately 1.3-fold within 2h by imaging Lucifer Yellow-injected CA1 pyramidal neurons. The E2-induced spine increase was blocked by ICI. The increase in spines was suppressed by blocking PI3K, Erk MAPK, p38 MAPK, PKA, PKC, LIMK, CaMKII or calcineurin, individually. On the other hand, blocking JNK did not inhibit the E2-induced spine increase. Taken together, these results suggest that E2 rapidly induced LTP and also increased the spine density through kinase networks that are driven by synaptic ER. This article is part of a Special Issue entitled SI: Brain and Memory.


Assuntos
Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/fisiologia , Estradiol/fisiologia , Potenciação de Longa Duração , Proteínas Quinases/metabolismo , Células Piramidais/fisiologia , Transdução de Sinais , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Estimulação Elétrica , Estradiol/farmacologia , Quinases Lim/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Masculino , Fosfatidilinositol 3-Quinase/metabolismo , Proteína Quinase C/metabolismo , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Brain Res ; 1621: 121-32, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25511993

RESUMO

Rapid modulation of hippocampal synaptic plasticity by locally synthesized androgen is important in addition to circulating androgen. Here, we investigated the rapid changes of dendritic spines in response to the elevation of dihydrotestosterone (DHT) and testosterone (T), by using hippocampal slices from adult male rats, in order to clarify whether these signaling processes include synaptic/extranuclear androgen receptor (AR) and activation of kinases. We found that the application of 10nM DHT and 10nM T increased the total density of spines by approximately 1.3-fold within 2h, by imaging Lucifer Yellow-injected CA1 pyramidal neurons. Interestingly, DHT and T increased different head-sized spines. While DHT increased middle- and large-head spines, T increased small-head spines. Androgen-induced spinogenesis was suppressed by individually blocking Erk MAPK, PKA, PKC, p38 MAPK, LIMK or calcineurin. On the other hand, blocking CaMKII did not inhibit spinogenesis. Blocking PI3K altered the spine head diameter distribution, but did not change the total spine density. Blocking mRNA and protein synthesis did not suppress the enhancing effects induced by DHT or T. The enhanced spinogenesis by androgens was blocked by AR antagonist, which AR was localized postsynaptically. Taken together, these results imply that enhanced spinogenesis by DHT and T is mediated by synaptic/extranuclear AR which rapidly drives the kinase networks. This article is part of a Special Issue entitled SI: Brain and Memory.


Assuntos
Androgênios/fisiologia , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/fisiologia , Di-Hidrotestosterona/farmacologia , Sinapses/fisiologia , Testosterona/fisiologia , Androgênios/farmacologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Masculino , Ratos , Ratos Wistar , Receptores Androgênicos/fisiologia , Sinapses/efeitos dos fármacos , Testosterona/farmacologia
16.
Brain Res ; 1621: 133-46, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25498865

RESUMO

Rapid modulation of hippocampal synaptic plasticity through synaptic estrogen receptors is an essential topic. We analyzed estradiol-induced modulation of CA1 dendritic spines using adult male ERαKO and ERßKO mice. A 2h treatment of estradiol particularly increased the density of middle-head spines (diameter 0.3-0.4 µm) in wild type mouse hippocampal slices. The enhancement of spinogenesis was completely suppressed by MAP kinase inhibitor. Estradiol-induced increase in middle-head spines was observed in ERßKO mice (which express ERα), but not in ERαKO, indicating that ERα is necessary for the spinogenesis. Direct observation of the dynamic estradiol-induced enhancing effect on rapid spinogenesis was performed using time-lapse imaging of spines in hippocampal live slices from yellow fluorescent protein expressed mice. Both appearance and disappearance of spines occurred, and the number of newly appeared spines was significantly greater than that of disappeared spines, resulting in the net increase of the spine density within 2h. As another type of synaptic modulation, we observed that estradiol rapidly enhanced N-methyl-D-aspartate (NMDA)-induced long-term depression (LTD) in CA1 of the wild type mouse hippocampus. In contrast, estradiol did not enhance NMDA-LTD in ERαKO mice, indicating the involvement of ERα in the estrogen signaling. This article is part of a Special Issue entitled SI: Brain and Memory.


Assuntos
Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/fisiologia , Estradiol/fisiologia , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Depressão Sináptica de Longo Prazo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Artigo em Inglês | MEDLINE | ID: mdl-24917791

RESUMO

Activin A is known as a neuroprotective factor produced upon acute excitotoxic injury of the hippocampus (in pathological states). We attempt to reveal the role of activin as a neuromodulator in the adult male hippocampus under physiological conditions (in healthy states), which remains largely unknown. We showed endogenous/basal expression of activin in the hippocampal neurons. Localization of activin receptors in dendritic spines (=postsynapses) was demonstrated by immunoelectron microscopy. The incubation of hippocampal acute slices with activin A (10 ng/mL, 0.4 nM) for 2 h altered the density and morphology of spines in CA1 pyramidal neurons. The total spine density increased by 1.2-fold upon activin treatments. Activin selectively increased the density of large-head spines, without affecting middle-head and small-head spines. Blocking Erk/MAPK, PKA, or PKC prevented the activin-induced spinogenesis by reducing the density of large-head spines, independent of Smad-induced gene transcription which usually takes more than several hours. Incubation of acute slices with activin for 2 h induced the moderate early long-term potentiation (moderate LTP) upon weak theta burst stimuli. This moderate LTP induction was blocked by follistatin, MAPK inhibitor (PD98059) and inhibitor of NR2B subunit of NMDA receptors (Ro25-6981). It should be noted that the weak theta burst stimuli alone cannot induce moderate LTP. These results suggest that MAPK-induced phosphorylation of NMDA receptors (including NR2B) may play an important role for activin-induced moderate LTP. Taken together, the current results reveal interesting physiological roles of endogenous activin as a rapid synaptic modulator in the adult hippocampus.


Assuntos
Receptores de Ativinas/metabolismo , Ativinas/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Receptores de Ativinas/genética , Ativinas/genética , Ativinas/farmacologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Front Neural Circuits ; 7: 191, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348341

RESUMO

Modulation of synapses under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT) secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. We tried to test whether rapid CORT effects involve activation of essential kinases as non-genomic processes. We demonstrated rapid effects (~1 h) of CORT on the density of thorns, by imaging Lucifer Yellow-injected neurons in adult male rat hippocampal slices. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. The application of CORT at 100, 500, and 1000 nM induced a rapid increase in the density of thorns in the stratum lucidum of CA3 pyramidal neurons. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR), abolished the effect of CORT. Blocking a single kinase, including MAPK, PKA, or PKC, suppressed CORT-induced enhancement of thorn-genesis. On the other hand, GSK-3ß was not involved in the signaling of thorn-genesis. Blocking AMPA receptors suppressed the CORT effect. Expression of CA3 synaptic/extranuclear GR was demonstrated by immunogold electron microscopic analysis. From these results, stress levels of CORT (100-1000 nM) might drive the rapid thorn-genesis via synaptic/extranuclear GR and multiple kinase pathways, although a role of nuclear GRs cannot be completely excluded.


Assuntos
Região CA3 Hipocampal/efeitos dos fármacos , Corticosterona/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Sinapses/efeitos dos fármacos , Animais , Região CA3 Hipocampal/metabolismo , Espinhas Dendríticas/metabolismo , Antagonistas de Hormônios/farmacologia , Masculino , Mifepristona/farmacologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/antagonistas & inibidores , Sinapses/metabolismo
19.
Front Neural Circuits ; 7: 149, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24151456

RESUMO

Synaptic plasticity of the female hippocampus may cyclically fluctuate across the estrous cycle. The spine density fluctuation had been explained by fluctuation of plasma estradiol (E2) and progesterone (PROG), with the assumption that these steroids penetrate into the hippocampus. Recently, however, we demonstrated that male hippocampal levels of sex steroids are much higher than those in plasma, suggesting a weak contribution of plasma steroids to the spine density. By combination of mass-spectrometric analysis with HPLC-purification and picolinoyl-derivatization of hippocampal sex steroids, we determined the accurate concentration of E2 and PROG at four stages of plasma estrous cycle including Proestrus (Pro), Estrus (Est), Diestrus 1 (D1), and Diestrus 2 (D2). Hippocampal levels of E2 and PROG showed cyclic fluctuation with a peak at Pro for E2 and at D1 for PROG, having a positive correlation with the plasma estrous cycle. All these sex steroid levels are much higher in the hippocampus than in plasma. Even after ovariectomy a significant levels of E2 and PROG were observed in the hippocampus. The total spine density showed higher values at Pro and D1, and lower values at Est and D2, having a good correlation with the peak levels of hippocampal E2 or PROG. We also examined fluctuation of the head diameter of spines. Interestingly, mRNA expression level of steroidogenic enzymes (P450arom and 17ß-HSD, etc.) and sex-steroid receptors did not significantly change across the estrous cycle. Therefore, the fluctuation of total hippocampal PROG (equal to sum of hippocampus-synthesized PROG and plasma PROG) may be originated from the contribution of cyclic change in plasma PROG, which can induce the fluctuation of total hippocampal E2, since steroid conversion activity of hippocampus might be nearly the same across the estrus cycle.


Assuntos
Espinhas Dendríticas/metabolismo , Estradiol/metabolismo , Ciclo Estral/metabolismo , Hipocampo/metabolismo , Progesterona/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Aromatase/genética , Aromatase/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Estradiol/sangue , Ciclo Estral/sangue , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ovariectomia , Progesterona/sangue , Progesterona/farmacologia , Ratos Wistar , Testosterona/sangue , Testosterona/metabolismo
20.
Clin Calcium ; 23(8): 1141-50, 2013 Aug.
Artigo em Japonês | MEDLINE | ID: mdl-23892214

RESUMO

Recently, brain synthesis of androgen and estrogen has been extensively investigated. Steroidogenic enzymes and receptors are expressed in glutamatergic neurons. The expression levels of mRNA or proteins for enzymes are as low as 1/200 - 1/1,000. However, hippocampal levels of androgen and estrogen are much higher than those of plasma. This is due to the fact that the volume of hippocampus is as small as 1/200 of the blood vessels. Androgen and estrogen can rapidly modulate synaptic plasticity of neural circuits. After andropause or menopause, the levels of androgen and estrogen in the hippocampus may significantly decrease, inducing dementia, Alzheimer's or depression. Hormone replacement therapy is valid for rescue of memory function, therefore synthesis and action of hippocampal androgen and estrogen is an important field for investigations.


Assuntos
Androgênios/metabolismo , Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Idoso , Envelhecimento , Animais , Estrogênios/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...