Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 8(1): 169, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333532

RESUMO

Fruit quality traits play a significant role in consumer preferences and consumption in blueberry (Vaccinium corymbosum L). The objectives of this study were to construct a high-density linkage map and to identify the underlying genetic basis of fruit quality traits in blueberry. A total of 287 F1 individuals derived from a cross between two southern highbush blueberry cultivars, 'Reveille' and 'Arlen', were phenotyped over three years (2016-2018) for fruit quality-related traits, including titratable acidity, pH, total soluble solids, and fruit weight. A high-density linkage map was constructed using 17k single nucleotide polymorphisms markers. The linkage map spanned a total of 1397 cM with an average inter-loci distance of 0.08 cM. The quantitative trait loci interval mapping based on the hidden Markov model identified 18 loci for fruit quality traits, including seven loci for fruit weight, three loci for titratable acidity, five loci for pH, and three loci for total soluble solids. Ten of these loci were detected in more than one year. These loci explained phenotypic variance ranging from 7 to 28% for titratable acidity and total soluble solid, and 8-13% for pH. However, the loci identified for fruit weight did not explain more than 10% of the phenotypic variance. We also reported the association between fruit quality traits and metabolites detected by Proton nuclear magnetic resonance analysis directly responsible for these fruit quality traits. Organic acids, citric acid, and quinic acid were significantly (P < 0.05) and positively correlated with titratable acidity. Sugar molecules showed a strong and positive correlation with total soluble solids. Overall, the study dissected the genetic basis of fruit quality traits and established an association between these fruit quality traits and metabolites.

2.
Nutr Rev ; 80(1): 68-77, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33837434

RESUMO

Berry consumption is linked to diverse health benefits, but numerous questions remain regarding mechanism of action, dose efficacy, and optimal duration and frequency of intake. Addressing these outstanding questions requires an organized assessment of current research, to inform future study designs and fill critical knowledge gaps. Tools that organize such information will also facilitate consumer messaging, targeted nutritional health initiatives, and dietary intake guidelines. This review aimed to describe the development and utility of the "Berry Health Tool Chest," an evidence map summarizing trial design features of studies characterizing the impact of berry consumption upon human health biomarkers. A systematic search strategy identified relevant high-quality human feeding studies, whose study design parameters were collected and compiled into an evidence map that is freely available as an interactive online interface enabling tabulated data to be interrogated, filtered, and exported. Of the 231 included studies, approximately 70% were of less than 3 months' duration and/or fewer than 50 participants, illustrating research gaps that could potentially inform the design of future studies.


Assuntos
Ingestão de Alimentos , Frutas , Humanos
3.
Front Nutr ; 7: 121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850939

RESUMO

Oxylipins are bioactive lipid oxidation products, have vital regulatory roles in numerous physiological processes including inflammation, and can be impacted by diet. This study determined if 2-weeks of blueberry and/or acute banana ingestion influenced generation of n-6 and n-3 PUFA-derived oxylipins during recovery from exercise-induced physiological stress. Cyclists (n = 59, 39 ± 2 years of age) were randomized to freeze-dried blueberry or placebo groups, and ingested 26 grams/d (1 cup/d blueberries equivalent) for 2 weeks. Cyclists reported to the lab in an overnight fasted state and engaged in a 75-km cycling time trial (185.5 ± 5.2 min). Cyclists from each group (blueberry, placebo) were further randomized to ingestion of a water-only control or water with a carbohydrate source (Cavendish bananas, 0.2 g/kg carbohydrate every 15 min) during exercise. Blood samples were collected pre- and post-2-weeks blueberry supplementation, and 0, 1.5, 3, 5, 24, and 48 h-post-exercise. Plasma oxylipins and blueberry and banana metabolites were measured with UPLC-tandem MS/MS. Significant time by treatment effects (eight time points, four groups) were found for 24 blueberry- and seven banana-derived phenolic metabolites in plasma (FDR adjusted p < 0.05). Significant post-exercise increases were observed for 64 of 67 identified plasma oxylipins. When oxylipins were grouped relative to fatty acid substrate [arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), α-linolenic acid (ALA), linoleic acid (LA)], and enzyme systems [cytochrome P450 (CYP), lipoxygenase (LOX)], banana and blueberry ingestion were independently associated with significant post-exercise reductions in pro-inflammatory ARA-CYP hydroxy- and dihydroxy-eicosatetraenoic acids (HETEs, DiHETrEs) (treatment effects, FDR adjusted p < 0.05). These trial differences were especially apparent within the first 3 h of recovery. In summary, heavy exertion evoked a transient but robust increase in plasma levels of oxylipins in cyclists, with a strong attenuation effect linked to both chronic blueberry and acute banana intake on pro-inflammatory ARA-CYP oxylipins.

4.
Molecules ; 24(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757061

RESUMO

Diets rich in berries provide health benefits, however, the contribution of berry phytochemicals to the human metabolome is largely unknown. The present study aimed to establish the impact of berry phytochemicals on the human metabolome. A "systematic review strategy" was utilized to characterize the phytochemical composition of the berries most commonly consumed in the USA; (poly)phenols, primarily anthocyanins, comprised the majority of reported plant secondary metabolites. A reference standard library and tandem mass spectrometry (MS/MS) quantitative metabolomics methodology were developed and applied to serum/plasma samples from a blueberry and a strawberry intervention, revealing a diversity of benzoic, cinnamic, phenylacetic, 3-(phenyl)propanoic and hippuric acids, and benzyldehydes. 3-Phenylpropanoic, 2-hydroxybenzoic, and hippuric acid were highly abundant (mean > 1 µM). Few metabolites at concentrations above 100 nM changed significantly in either intervention. Significant intervention effects (P < 0.05) were observed for plasma/serum 2-hydroxybenzoic acid and hippuric acid in the blueberry intervention, and for 3-methoxyphenylacetic acid and 4-hydroxyphenylacetic acid in the strawberry intervention. However, significant within-group effects for change from baseline were prevalent, suggesting that high inter-individual variability precluded significant treatment effects. Berry consumption in general appears to cause a fluctuation in the pools of small molecule metabolites already present at baseline, rather than the appearance of unique berry-derived metabolites, which likely reflects the ubiquitous nature of (poly)phenols in the background diet.


Assuntos
Antocianinas/farmacocinética , Mirtilos Azuis (Planta)/química , Fragaria/química , Frutas/química , Metaboloma , Polifenóis/farmacocinética , Antocianinas/química , Humanos , Polifenóis/química
5.
J Inorg Biochem ; 190: 24-30, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342352

RESUMO

CopA is a Cu(I)-exporting transmembrane P1B-type ATPase from Bacillus subtilis. It contains two N-terminal cytoplasmic domains, CopAab, which bind Cu(I) with high affinity and to form higher-order complexes with multiple Cu(I) ions. To determine the precise nature of these species, electrospray ionisation mass spectrometry (ESI-MS) under non-denaturing conditions was employed. Up to 1 Cu per CopAab resulted in Cu coordination to one or both CopAab domains. At >1 Cu/CopAab, two distinct dimeric charge state envelopes were observed, corresponding to distinct conformations, each with Cu6(CopAab)2 as its major form. The influence of the physiologically relevant low molecular weight thiol bacillithiol (BSH) on Cu(I)-binding to CopAab was assessed. Dimeric CopAab persisted in the presence of BSH, with previously undetected Cu7(CopAab)2 and Cu6(CopAab)2(BSH) forms apparent.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Espectrometria de Massas por Ionização por Electrospray/métodos , Cisteína/metabolismo , Dimerização , Glucosamina/metabolismo , Ligação Proteica
6.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 275-282, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29146226

RESUMO

Copper-transporting P-type ATPases, which play important roles in trafficking Cu(I) across membranes for the biogenesis of copper proteins or for copper detoxification, contain a variable number of soluble metal-binding domains at their N-termini. It is increasingly apparent that these play an important role in regulating copper transport in a Cu(I)-responsive manner, but how they do this is unknown. CopA, a Cu(I)-transporter from Bacillus subtilis, contains two N-terminal soluble domains that are closely packed, with inter-domain interactions at two principal regions. Here, we sought to determine the extent to which the domains interact in the absence of their inter-domain covalent linker, and how their Cu(I)-binding properties are affected. Studies of a 1:1 mixture of separate CopAa and CopAb domains showed that the domains do not form a stable complex, with only indirect evidence of a weak interaction between them. Their Cu(I)-binding behaviour was distinct from that of the two domain protein and consistent with a lack of interaction between the domains. Cu(I)-mediated protein association was observed, but this occurred only between domains of the same type. Thus, the inter-domain covalent link between CopAa and CopAb is essential for inter-domain interactions and for Cu(I)-binding behaviour.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Cobre/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Domínios Proteicos
7.
Chem Commun (Camb) ; 53(8): 1397-1400, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28078344

RESUMO

Chaperone proteins that traffic copper around the cell minimise its toxicity by maintaining it in a tightly bound form. The transfer of copper from chaperones to target proteins is promoted by complex formation, but the kinetic characteristics of transfer have yet to be demonstrated for any chaperone-target protein pair. Here we report studies of copper transfer between the Atx1-type chaperone CopZ from Bacillus subtilis and the soluble domains of its cognate P-type ATPase transporter, CopAab. Transfer of copper from CopZ to CopAab was found to occur rapidly, with a rate constant at 25 °C of ∼267 s-1, many orders of magnitude higher than that for Cu(i) dissociation from CopZ in the absence of CopAab. The data demonstrate that complex formation between CopZ and CopAab, evidence for which is provided by NMR and electrospray ionisation mass spectrometry, dramatically enhances the rate of Cu(i) dissociation from CopZ.


Assuntos
Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Cobre/análise , Cinética , Espectrometria de Massas , Modelos Moleculares , Chaperonas Moleculares/química , Teoria Quântica
8.
Metallomics ; 8(7): 709-19, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27197762

RESUMO

CopZ from Bacillus subtilis is a well-studied member of the highly conserved family of Atx1-like copper chaperones. It was previously shown via solution and crystallographic studies to undergo Cu(i)-mediated dimerisation, where the CopZ dimer can bind between one and four Cu(i) ions. However, these studies could not provide information about the changing distribution of species at increasing Cu(i) levels. To address this, electrospray ionisation mass spectrometry using soft ionisation was applied to CopZ under native conditions. Data revealed folded, monomeric CopZ in apo- and Cu(i)-bound forms, along with Cu(i)-bound dimeric forms of CopZ at higher Cu(i) loading. Cu4(CopZ)2 was the major dimeric species at loadings >1 Cu(i)/CopZ, indicating the cooperative formation of the tetranuclear Cu(i)-bound species. As the principal low molecular weight thiol in B. subtilis, bacillithiol (BSH) may play a role in copper homeostasis. Mass spectrometry showed that increasing BSH led to a reduction in Cu(i)-bound dimeric forms, and the formation of S-bacillithiolated apo-CopZ and BSH adducts of Cu(i)-bound forms of CopZ, where BSH likely acts as a Cu(i) ligand. These data, along with the high affinity of BSH for Cu(i), determined here to be ß2(BSH) = ∼4 × 10(17) M(-2), are consistent with a role for BSH alongside CopZ in buffering cellular Cu(i) levels. Here, mass spectrometry provides a high resolution overview of CopZ-Cu(i) speciation that cannot be obtained from less discriminating solution-phase methods, thus illustrating the potential for the wider application of this technique to studies of metal-protein interactions.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Espectrometria de Massas/métodos , Chaperonas Moleculares/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Sítios de Ligação , Cisteína/metabolismo , Glucosamina/metabolismo , Modelos Moleculares , Ligação Proteica
9.
J Proteome Res ; 10(6): 2807-16, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21491888

RESUMO

The activity of Cytochrome P450 3A4 (CYP3A4) enzyme is associated with many adverse or poor therapeutic responses to drugs. We used (1)H NMR-based metabonomics to identify a metabolic signature associated with variation in induced CYP3A4 activity. A total of 301 female twins, aged 45--84, participated in this study. Each volunteer was administered a potent inducer of CYP3A4 (St. John's Wort) for 14 days and the activity of CYP3A4 was quantified through the metabolism of the exogenously administered probe drug quinine sulfate (300 mg). Pre- and postintervention fasting urine samples were used to obtain metabolite profiles, using (1)H NMR spectroscopy, and were analyzed using UPLC--MS to obtain a marker for CYP3A4 induction, via the ratio of 3-hydroxyquinine to quinine (3OH-Q:Q). Multiple linear regression was used to build a predictive model for 3OH-Q:Q values based on the preintervention metabolite profiles. A combination of seven metabolites and seven covariates showed a strong (r = 0.62) relationship with log(3OH-Q:Q). This regression model demonstrated significant (p < 0.00001) predictive ability when applied to an independent validation set. Our results highlight the promise of metabonomics for predicting CYP3A4-mediated drug response.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Hypericum , Metabolômica/métodos , Extratos Vegetais/farmacologia , Prótons , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida/métodos , Citocromo P-450 CYP3A/genética , Feminino , Glicina/análogos & derivados , Glicina/urina , Humanos , Inositol/urina , Modelos Lineares , Espectroscopia de Ressonância Magnética/métodos , Pessoa de Meia-Idade , Prolina/análogos & derivados , Prolina/urina , Espectrometria de Massas em Tandem/métodos , Gêmeos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...