Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(11): e1011045, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011265

RESUMO

Electrical synapses are neuronal gap junction (GJ) channels associated with a macromolecular complex called the electrical synapse density (ESD), which regulates development and dynamically modifies electrical transmission. However, the proteomic makeup and molecular mechanisms utilized by the ESD that direct electrical synapse formation are not well understood. Using the Mauthner cell of zebrafish as a model, we previously found that the intracellular scaffolding protein ZO1b is a member of the ESD, localizing postsynaptically, where it is required for GJ channel localization, electrical communication, neural network function, and behavior. Here, we show that the complexity of the ESD is further diversified by the genomic structure of the ZO1b gene locus. The ZO1b gene is alternatively initiated at three transcriptional start sites resulting in isoforms with unique N-termini that we call ZO1b-Alpha, -Beta, and -Gamma. We demonstrate that ZO1b-Beta and ZO1b-Gamma are broadly expressed throughout the nervous system and localize to electrical synapses. By contrast, ZO1b-Alpha is expressed mainly non-neuronally and is not found at synapses. We generate mutants in all individual isoforms, as well as double mutant combinations in cis on individual chromosomes, and find that ZO1b-Beta is necessary and sufficient for robust GJ channel localization. ZO1b-Gamma, despite its localization to the synapse, plays an auxiliary role in channel localization. This study expands the notion of molecular complexity at the ESD, revealing that an individual genomic locus can contribute distinct isoforms to the macromolecular complex at electrical synapses. Further, independent scaffold isoforms have differential contributions to developmental assembly of the interneuronal GJ channels. We propose that ESD molecular complexity arises both from the diversity of unique genes and from distinct isoforms encoded by single genes. Overall, ESD proteomic diversity is expected to have critical impacts on the development, structure, function, and plasticity of electrical transmission.


Assuntos
Sinapses Elétricas , Peixe-Zebra , Animais , Sinapses Elétricas/fisiologia , Peixe-Zebra/genética , Proteômica , Sinapses/genética , Junções Comunicantes/fisiologia , Canais Iônicos , Isoformas de Proteínas/genética
2.
Elife ; 72018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398151

RESUMO

Stable mutualism between a host and its resident bacteria requires a moderated immune response to control bacterial population size without eliciting excessive inflammation that could harm both partners. Little is known about the specific molecular mechanisms utilized by bacterial mutualists to temper their hosts' responses and protect themselves from aggressive immune attack. Using a gnotobiotic larval zebrafish model, we identified an Aeromonas secreted immunomodulatory protein, AimA. AimA is required during colonization to prevent intestinal inflammation that simultaneously compromises both bacterial and host survival. Administration of exogenous AimA prevents excessive intestinal neutrophil accumulation and protects against septic shock in models of both bacterially and chemically induced intestinal inflammation. We determined the molecular structure of AimA, which revealed two related calycin-like domains with structural similarity to the mammalian immune modulatory protein, lipocalin-2. As a secreted bacterial protein required by both partners for optimal fitness, AimA is an exemplar bacterial mutualism factor.


Assuntos
Aeromonas/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Simbiose/genética , Animais , Interações Hospedeiro-Patógeno/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Larva/imunologia , Larva/microbiologia , Lipocalinas/genética , Lipocalinas/imunologia , Domínios Proteicos/genética , Simbiose/imunologia , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...