Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(2): e2300483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876336

RESUMO

This study focuses on the synthesis of fully renewable polycarbonates (PCs) starting from cellulose-based platform molecules levoglucosenone (LGO) and 2,5-bis(hydroxymethyl)furan (BHMF). These unique bio-based PCs are obtained through the reaction of a citronellol-containing triol (Triol-citro) derived from LGO, with a dimethyl carbonate derivative of BHMF (BHMF-DC). Solvent-free polymerizations are targeted to minimize waste generation and promote an eco-friendly approach with a favorable environmental factor (E-factor). The choice of metal catalyst during polymerization significantly influences the polymer properties, resulting in high molecular weight (up to 755 kDa) when Na2 CO3 is employed as an inexpensive catalyst. Characterization using nuclear magnetic resonance confirms the successful incorporation of the furan ring and the retention of the terminal double bond of the citronellol pendant chain. Furthermore, under UV irradiation, the presence of both citronellol and furanic moieties induces singular structural changes, triggering the formation of three distinct structures within the polymer network, a phenomenon herein occurs for the first time in this type of polymer. These findings pave the way to new functional materials prepared from renewable monomers with tunable properties.


Assuntos
Monoterpenos Acíclicos , Compostos Bicíclicos Heterocíclicos com Pontes , Furaldeído/análogos & derivados , Glucose/análogos & derivados , Cimento de Policarboxilato , Polímeros , Polímeros/química
2.
Polymers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631964

RESUMO

Recently, a renewable five-membered lactone containing citronellol (HBO-citro) was synthesized from levoglucosenone (LGO). A one-pot two-step pathway was then developed to produce a mixture of 5- and 6-membered Lactol-citro molecules (5ML and 6ML, respectively) from HBO-citro. Proton nuclear magnetic resonance (1H NMR) of a mixture of 5ML and 6ML at varying temperatures showed that the chemical shifts of the hydroxyls, as well as the 5ML:6ML ratio, are temperature-dependent. Indeed, a high temperature, such as 65 °C, led to an up-field shielding of the hydroxyl protons as well as a drop in the 5ML:6ML ratio. The monomers 5ML and 6ML were then engaged in polycondensation reactions involving diacyl chlorides. Renewable copolyesters with low glass transition temperatures (as low as -67 °C) and cross-linked citronellol chains were prepared. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG). A higher degradation rate was found for the polymers prepared using Lactol-citro molecules, compared to those obtained by the polycondensation reactions of diacyl chlorides with Triol-citro-a monomer recently obtained by the selective reduction of HBO-citro.

3.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946753

RESUMO

Levoglucosenone (LGO) is a cellulose-derived molecule that is present commercially on a multi-ton/year scale. Taking advantage of the α,ß-conjugated ketone of LGO, a new citronellol-containing 5-membered lactone (HBO-citro) was synthesized through a one-pot two-step pathway involving oxa-Michael addition and Baeyer-Villiger oxidation. The solvent-free treatment of HBO-citro with NaBH4 at room temperature led to the full reduction of the lactone moiety which gave a novel fully renewable triol monomer having a citronellol side chain (Triol-citro). Noticeably, by simply changing the reducing agent, temperature and reaction duration, the partial reduction of HBO-citro can be achieved to yield a mixture of 5- and 6-membered Lactol-citro molecules. Triol-citro was chosen to prepare functional renewable polyesters having citronellol pendant chains via polycondensation reactions with diacyl chlorides having different chain lengths. Good thermal stability (Td5% up to 170 °C) and low glass transition temperatures (as low as -42 °C) were registered for the polyesters obtained. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG) to assess their biodegradability. A higher degradation profile was found for the polyesters prepared using co-monomers (acyl chlorides) having longer chain lengths. This is likely due to the decreased steric hindrance around the ester bonds which allowed enhanced accessibility of the enzyme.


Assuntos
Monoterpenos Acíclicos/metabolismo , Celulose/metabolismo , Lipase/metabolismo , Poliésteres/metabolismo , Monoterpenos Acíclicos/química , Biodegradação Ambiental , Celulose/química , Eurotiales/enzimologia , Lipase/química , Estrutura Molecular , Poliésteres/síntese química , Poliésteres/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...