Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6623): 996-1000, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454823

RESUMO

Cells need to detect and degrade faulty membrane proteins to maintain homeostasis. In this study, we identify a previously unknown function of the human signal peptidase complex (SPC)-the enzyme that removes endoplasmic reticulum (ER) signal peptides-as a membrane protein quality control factor. We show that the SPC cleaves membrane proteins that fail to correctly fold or assemble into their native complexes at otherwise hidden cleavage sites, which our study reveals to be abundant in the human membrane proteome. This posttranslocational cleavage synergizes with ER-associated degradation to sustain membrane protein homeostasis and contributes to cellular fitness. Cryptic SPC cleavage sites thus serve as predetermined breaking points that, when exposed, help to target misfolded or surplus proteins for degradation, thereby maintaining a healthy membrane proteome.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Proteínas de Membrana , Serina Endopeptidases , Humanos , Proteínas de Membrana/metabolismo , Proteoma , Proteólise
2.
J Biol Chem ; 298(12): 102677, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36336075

RESUMO

Cytokines of the interleukin 12 (IL-12) family are assembled combinatorially from shared α and ß subunits. A common theme is that human IL-12 family α subunits remain incompletely structured in isolation until they pair with a designate ß subunit. Accordingly, chaperones need to support and control specific assembly processes. It remains incompletely understood, which chaperones are involved in IL-12 family biogenesis. Here, we site-specifically introduce photocrosslinking amino acids into the IL-12 and IL-23 α subunits (IL-12α and IL-23α) for stabilization of transient chaperone-client complexes for mass spectrometry. Our analysis reveals that a large set of endoplasmic reticulum chaperones interacts with IL-12α and IL-23α. Among these chaperones, we focus on protein disulfide isomerase (PDI) family members and reveal IL-12 family subunits to be clients of several incompletely characterized PDIs. We find that different PDIs show selectivity for different cysteines in IL-12α and IL-23α. Despite this, PDI binding generally stabilizes unassembled IL-12α and IL-23α against degradation. In contrast, α:ß assembly appears robust, and only multiple simultaneous PDI depletions reduce IL-12 secretion. Our comprehensive analysis of the IL-12/IL-23 chaperone machinery reveals a hitherto uncharacterized role for several PDIs in this process. This extends our understanding of how cells accomplish the task of specific protein assembly reactions for signaling processes. Furthermore, our findings show that cytokine secretion can be modulated by targeting specific endoplasmic reticulum chaperones.


Assuntos
Citocinas , Isomerases de Dissulfetos de Proteínas , Humanos , Interleucina-12 , Interleucina-23 , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Retículo Endoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...