Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-488236

RESUMO

Awareness that fungal coinfection complicates viral respiratory infections causing worse disease outcome has recently emerged. The environmental fungus Aspergillus fumigatus (Af) has been reported as the main driver of fungal coinfection in patients suffering from viral infections caused by Cytomegalovirus, Influenza or more recently SARS-CoV2. The airway epithelium is the first common point of contact between inhaled pathogens and the host. Aberrant airway epithelial cell (AEC) responses against fungal challenge have been described in patients susceptible to aspergillosis. Therefore, it is likely that a dysregulation of AEC responses during fungal-viral coinfection represents a potent driver for the development of fungal disease. Here we used an in vitro model of Af-viral infection of AECs to determine outcomes of spore internalisation, killing and viral replication during coinfection. Our data indicate that viral stimulation, while boosting Af uptake by AECs, limits Af spore killing by those cells, favouring fungal persistence and growth. Type I viral-induced interferon release was significantly decreased in the presence of Af hyphal forms suggesting a possible role of Af secreted factors in modulating viral pathogenicity. We next explored the impact of Af challenge in SARS-CoV2 replication within airway epithelial cells using nano-luciferase as a measure of viral replication. We found that Af increased SARS-CoV2 pathogenicity in a strain-dependent manner. Collectively, our findings demonstrate a mutual inhibition of antifungal and antiviral AEC responses during Af-viral coinfection and also suggest that some fungal factors might be key regulators of co-pathogenicity during in lung infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...