Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831002

RESUMO

Cancer is the second leading cause of death worldwide after heart disease. The current treatment options to fight cancer are limited, and there is a critical need for better treatment strategies. During the last several decades, several electric field (EF)-based approaches for anti-cancer therapies have been introduced, such as electroporation and tumor-treating fields; still, they are far from optimal due to their invasive nature, limited efficacy and significant side effects. In this study, we developed a non-contact EF stimulation system to investigate the in vitro effects of a novel EF modality on cancer biomarkers in normal (human astrocytes, human pancreatic ductal epithelial -HDPE-cells) and cancer cell lines (glioblastoma U87-GBM, human pancreatic cancer cfPac-1, and MiaPaCa-2). Our results demonstrate that this EF modality can successfully modulate an important cancer cell biomarker-cell surface phosphatidylserine (PS). Our results further suggest that moderate, but not low, amplitude EF induces p38 mitogen-activated protein kinase (MAPK), actin polymerization, and cell cycle arrest in cancer cell lines. Based on our results, we propose a mechanism for EF-mediated PS exposure in cancer cells, where the magnitude of induced EF on the cell surface can differentially regulate intracellular calcium (Ca2+) levels, thereby modulating surface PS exposure.

2.
Cancers (Basel) ; 14(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626139

RESUMO

Cancer is among the leading causes of death worldwide. In recent years, many cancer-associated biomarkers have been identified that are used for cancer diagnosis, prognosis, screening, and early detection, as well as for predicting and monitoring carcinogenesis and therapeutic effectiveness. Phosphatidylserine (PS) is a negatively charged phospholipid which is predominantly located in the inner leaflet of the cell membrane. In many cancer cells, PS externalizes to the outer cell membrane, a process regulated by calcium-dependent flippases and scramblases. Saposin C coupled with dioleoylphosphatidylserine (SapC-DOPS) nanovesicle (BXQ-350) and bavituximab, (Tarvacin, human-mouse chimeric monoclonal antibodies) are cell surface PS-targeting drugs being tested in clinical trial for treating a variety of cancers. Additionally, a number of other PS-selective agents have been used to trigger cytotoxicity in tumor-associated endothelial cells or cancer cells in pre-clinical studies. Recent studies have demonstrated that upregulation of surface PS exposure by chemodrugs, radiation, and external electric fields can be used as a novel approach to sensitize cancer cells to PS-targeting anticancer drugs. The objectives of this review are to provide an overview of a unique dual-role of PS as a biomarker/target for cancer imaging and therapy, and to discuss PS-based anticancer strategies that are currently under active development.

3.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832975

RESUMO

Glioblastoma multiforme (GBM), the most common type of brain cancer, is extremely aggressive and has a dreadful prognosis. GBM comprises 60% of adult brain tumors and the 5 year survival rate of GBM patients is only 4.3%. Standard-of-care treatment includes maximal surgical removal of the tumor in combination with radiation and temozolomide (TMZ) chemotherapy. TMZ is the "gold-standard" chemotherapy for patients suffering from GBM. However, the median survival is only about 12 to 18 months with this protocol. Consequently, there is a critical need to develop new therapeutic options for treatment of GBM. Nanomaterials have unique properties as multifunctional platforms for brain tumor therapy and diagnosis. As one of the nanomaterials, lipid-based nanocarriers are capable of delivering chemotherapeutics and imaging agents to tumor sites by enhancing the permeability of the compound through the blood-brain barrier, which makes them ideal for GBM therapy and imaging. Nanocarriers also can be used for delivery of radiosensitizers to the tumor to enhance the efficacy of the radiation therapy. Previously, high-atomic-number element-containing particles such as gold nanoparticles and liposomes have been used as radiosensitizers. SapC-DOPS, a protein-based liposomal drug comprising the lipid, dioleoylphosphatidylserine (DOPS), and the protein, saposin C (SapC), has been shown to be effective for treatment of a variety of cancers in small animals, including GBM. SapC-DOPS also has the unique ability to be used as a carrier for delivery of radiotheranostic agents for nuclear imaging and radiotherapeutic purposes. These unique properties make tumor-targeting proteo-liposome nanocarriers novel therapeutic and diagnostic alternatives to traditional chemotherapeutics and imaging agents. This article reviews various treatment modalities including nanolipid-based delivery and therapeutic systems used in preclinical and clinical trial settings for GBM treatment and detection.

4.
World J Gastrointest Oncol ; 13(6): 550-559, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34163572

RESUMO

Pancreatic cancer is one of the deadliest of cancers with a five-year survival of roughly 8%. Current therapies are: surgery, radiation and chemotherapy. Surgery is curative only if the cancer is caught very early, which is rare, and the latter two modalities are only marginally effective and have significant side effects. We have developed a nanosome comprised of the lysosomal protein, saposin C (SapC) and the acidic phospholipid, dioleoylphosphatidylserine (DOPS). In the acidic tumor microenvironment, this molecule, SapC-DOPS, targets the phosphatidylserine cancer-biomarker which is predominantly elevated on the surface of cancer cells. Importantly, SapC-DOPS can selectively target pancreatic tumors and metastases. Furthermore, SapC-DOPS has exhibited an impressive safety profile with only a few minor side effects in both preclinical experiments and in phase I clinical trials. With the dismal outcomes for pancreatic cancer there is an urgent need for better treatments and SapC-DOPS is a good candidate for addition to the oncologist's toolbox.

5.
Anal Bioanal Chem ; 411(10): 1935-1941, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30810791

RESUMO

Mutations in mitochondrial DNA (mtDNA) have been an essential cause of numerous diseases, making their identification critically important. The majority of mtDNA screening techniques require polymerase chain reaction (PCR) amplification, enzymatic digestion, and denaturation procedures, which are laborious and costly. Herein, we developed a sensitive PCR-free electrokinetic-based sensor combined with a customized bis-peptide nucleic acid (bis-PNA) and gamma-PNA (γ-PNA) probes immobilized on beads, for the detection of mtDNA point mutations and sequence-specific supercoiled plasmid DNA at the picomolar range. The probes are capable of invading the double-stranded circular DNA and forming a stable triplex structure. Thus, this method can significantly reduce the sample preparation and omit the PCR amplification steps prior to sensing. Further, this bioanalytical tool can open up a new paradigm in clinical settings for the screening of double-stranded circular nucleic acids with a single-base mismatch specificity in a rapid and sensitive manner.


Assuntos
Análise Mutacional de DNA/instrumentação , DNA Circular/genética , DNA Mitocondrial/genética , Mutação Puntual , Sequência de Bases , Células Cultivadas , Análise Mutacional de DNA/economia , Análise Mutacional de DNA/métodos , DNA Circular/análise , DNA Mitocondrial/análise , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Humanos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Plasmídeos/análise , Plasmídeos/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...