Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 950: 175355, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39122047

RESUMO

The global increase in population has led to higher emissions from livestock and synthetic fertilizers. This study investigates the impact of agricultural ammonia emissions on NH3 concentrations and provides insights into PM2.5 levels and their components in agriculturally intensified areas. We developed a bottom-up emission inventory focused on fertilizer application over croplands and livestock, instead of relying on the EMEP database. This approach utilized an improved spatial and temporal distribution of these emissions. We compared annual total NH3 emissions from livestock and fertilizer, estimated at 598.5 kt and 187.2 kt in the EMEP inventory (Base case), and 245.2 kt and 536 kt in the bottom-up inventory (Scenario case). Using the CMAQ modelling framework, we estimated atmospheric concentrations for both cases and evaluated the model results by comparing them with IASI-NH3 satellite retrievals. This comparison revealed significant differences in column concentrations between the Base and Scenario cases, with the Scenario case showing substantial improvement. Over a period of seven months, which contributed 80 % of the annual agricultural emissions for the Scenario case, the domain averages of NH3 were 3.02 × 1015, 4.15 × 1015, and 4.17 × 1015 molecules/cm2 for the Base and Scenario cases and IASI-NH3, respectively. The Scenario case closely matched IASI measurements, indicating a more accurate representation of NH3 emissions and concentrations. This enhanced reliability underscores the effectiveness of the bottom-up inventory approach. Additionally, using the CMAQ model, we found that in the IASI hotspots, the averages were 1.67 µg/m3 for sulfate, 0.57 µg/m3 for nitrate, and 0.62 µg/m3 for ammonium, with a total PM2.5 mean of 10.45 µg/m3.

2.
Sci Total Environ ; 689: 808-819, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31280163

RESUMO

The aim of this study is to investigate the impact of ten proposed plants along with three operating plants in Çanakkale province of Turkey where the proposed plants are within very close proximity. The province has the highest capacity of the planned plants and the region is also of interest due to its history, tourism and agriculture potential. Current SO2 pollution was assessed using ground observations and satellite retrievals where the impact of plants was better captured by satellite retrievals. Individual and cumulative impact from proposed and operating plants was simulated by CALPUFF for 2014. The study domain was 150 × 150 km2, with 1 × 1 km2 cell size. The effect of changing meteorological inputs and domain size were investigated with simulations. Three cases were performed using meteorological inputs: from one surface and one radiosonde station (Case 1), 22 surface and one radiosonde station (Case 2), and 22 surface and two radiosonde stations (Case 3). Case 2 and 3 resulted in higher concentrations and showed larger affected regions than case 1 in all simulations. The cumulative impact of proposed plants indicated national annual and daily limit values were exceeded in Case 2 and 3. Hourly limit values were exceeded in all three cases. Simulations for two selected proposed plants were assessed for plant impact area given in environmental impact area reports. Results indicated the plant impact areas cannot be sufficient to determine the maximum SO2 concentrations in some cases and using single meteorology station data cannot represent the study area, especially regions with complex terrain and land-sea interactions such as Çanakkale province. Cumulative impact can be underestimated due to small size of plant impact areas not including other plants. Lastly satellite retrievals are better capturing the pollution than air quality monitoring stations which are strongly affected by meteorology.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Centrais Elétricas , Tecnologia de Sensoriamento Remoto , Dióxido de Enxofre/análise , Carvão Mineral , Modelos Teóricos , Astronave
3.
Sci Total Environ ; 488-489: 437-46, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24342492

RESUMO

This paper focuses on the toxicity evaluation and source apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in three monitoring stations in Istanbul, Turkey. A total of 326 airborne samples were collected and analyzed for 16 PAHs and Total Suspended Particles (TSP) for the period of September 2006-December 2007. The total average PAH concentrations were 100.7±61.3, 84.6±46.7 and 25.1±13.3 ng m(-3) and the TSP concentrations were 101.2±53.2, 152.3±99.1, 49.8±18.6 µg m(-3) for URB1, URB2 and RUR stations, respectively. Benzo(a)Pyren (BaP) toxic equivalency factors to PAH concentration values were calculated indicating that the health risk of BaP and DiBenz(a,h)Anthracene (markers of traffic emissions) have the highest contribution compared to all of the other species measured at the sampling sites. In order to determine PAH sources, two different source apportionment techniques were applied to the measurements; diagnostic ratios (DR) and Positive Matrix Factorization (PMF). The results of the two applications were compatible indicating the vehicle emissions - especially diesel engines - as the major source for urban stations.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...