Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(4)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38675770

RESUMO

Vaccines are highly effective at preventing severe coronavirus disease (COVID-19). With mRNA vaccines, further research is needed to understand the association between immunogenicity and reactogenicity, which is defined as the physical manifestation of an inflammatory response to a vaccination. This study analyzed the immune response and reactogenicity in humans, post immunization, to the former SARS-CoV-2 mRNA investigational vaccine CVnCoV (CV-NCOV-001 and CV-NCOV-002 clinical trials). Immunogenicity was investigated using whole-blood RNA sequencing, serum cytokine levels, and SARS-CoV-2-specific antibodies. The T cell responses in peripheral blood were assessed using intracellular cytokine staining (ICS) and high-dimensional profiling in conjunction with SARS-CoV-2 antigen-specificity testing via mass cytometry. Reactogenicity was graded after participants' first and second doses of CVnCoV using vaccine-related solicited adverse events (AEs). Finally, a Spearman correlation was performed between reactogenicity, humoral immunity, and serum cytokine levels to assess the relationship between reactogenicity and immunogenicity post CVnCoV vaccination. Our findings showed that the gene sets related to innate and inflammatory immune responses were upregulated one day post CVnCoV vaccination, while the gene sets related to adaptive immunity were upregulated predominantly one week after the second dose. The serum levels of IFNα, IFNγ, IP-10, CXCL11, IL-10, and MCP-1 increased transiently, peaking one day post vaccination. CD4+ T cells were induced in all vaccinated participants and low frequencies of CD8+ T cells were detected by ex vivo ICS. Using mass cytometry, SARS-CoV-2 spike-specific CD8+ T cells were induced and were characterized as having an activated effector memory phenotype. Overall, the results demonstrated a positive correlation between vaccine-induced systemic cytokines, reactogenicity, and adaptive immunity, highlighting the importance of the balance between the induction of innate immunity to achieve vaccine efficacy and ensuring low reactogenicity.

3.
Vaccine X ; 11: 100189, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35791320

RESUMO

Background: The COVID-19 vaccine candidate CVnCoV comprises sequence-optimized mRNA encoding SARS-CoV-2 S-protein encapsulated in lipid nanoparticles. In this phase 2a study, we assessed reactogenicity and immunogenicity of two or three doses in younger and older adults. Methods: Younger (18-60 years) and older (>60 years) adults were enrolled in two sites in Panama and Peru to receive either 6 or 12 µg doses of CVnCoV or licensed control vaccines 28 days apart; subsets received a 12 µg booster dose on Day 57 or Day 180. Solicited adverse events (AE) were reported for 7 days and unsolicited AEs for 4 weeks after each vaccination, and serious AEs (SAE) throughout the study. Humoral immunogenicity was measured as neutralizing and receptor binding domain (RBD) IgG antibodies and cellular immunogenicity was assessed as CD4+/CD8 + T cell responses. Results: A total of 668 participants were vaccinated (332 aged 18-60 years and 336 aged > 60 years) including 75 who received homologous booster doses. Vaccination was well tolerated with no vaccine-related SAEs. Solicited and unsolicited AEs were mainly mild to moderate and resolved spontaneously. Both age groups demonstrated robust immune responses as neutralizing antibodies or RBD-binding IgG, after two doses, with lower titers in the older age group than the younger adults. Neither group achieved levels observed in human convalescent sera (HCS), but did equal or surpass HCS levels following homologous booster doses. Following CVnCoV vaccination, robust SARS-CoV-2 S-protein-specific CD4 + T-cell responses were observed in both age groups with CD8 + T-cell responses in some individuals, consistent with observations in convalescing COVID-19 patients after natural infection. Conclusions: We confirmed that two 12 µg doses of CVnCoV had an acceptable safety profile, and induced robust immune responses. Marked humoral immune responses to homologous boosters suggest two doses had induced immune memory.

4.
Vaccines (Basel) ; 10(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35455257

RESUMO

A third dose of CVnCoV, a former candidate mRNA vaccine against SARS-CoV-2, was previously shown to boost neutralizing antibody responses against SARS-CoV-2 wild-type in adults aged 18−60 and >60 years in a phase 2a clinical study. In the present study, we report the neutralizing antibody responses to a wild-type and a variant of concern, Delta, after a third dose of the vaccine on day (D)57 and D180. Neutralization activity was assessed using a microneutralization assay. Comparable levels of neutralizing antibodies against the wild-type and Delta were induced. These were higher than those observed after the first two doses, irrespective of age or pre-SARS-CoV-2-exposure status, indicating that the first two doses induced immune memory. Four weeks after the third dose on D180, the neutralizing titers for wild-type and Delta were two-fold higher in younger participants than in older participants; seroconversion rates were 100% for wild-type and Delta in the younger group and for Delta in the older group. A third CVnCoV dose induced similar levels of neutralizing responses against wild-type virus and the Delta variant in both naïve and pre-exposed participants, aligning with current knowledge from licensed COVID-19 vaccines that a third dose is beneficial against SARS-CoV-2 variants.

5.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925654

RESUMO

Immune responses induced by currently licensed inactivated influenza vaccines are mainly directed against the hemagglutinin (HA) glycoprotein, the immunodominant antigen of influenza viruses. The resulting antigenic drift of HA requires frequent updating of the vaccine composition and annual revaccination. On the other hand, the levels of antibodies directed against the neuraminidase (NA) glycoprotein, the second major influenza virus antigen, vary greatly. To investigate the potential of the more conserved NA protein for the induction of subtype-specific protection, vesicular stomatitis virus-based replicons expressing a panel of N1 proteins from prototypic seasonal and pandemic H1N1 strains and human H5N1 and H7N9 isolates were generated. Immunization of mice and ferrets with the replicon carrying the matched N1 protein resulted in robust humoral and cellular immune responses and protected against challenge with the homologous influenza virus with an efficacy similar to that of the matched HA protein, illustrating the potential of the NA protein as a vaccine antigen. The extent of protection after immunization with mismatched N1 proteins correlated with the level of cross-reactive neuraminidase-inhibiting antibody titers. Passive serum transfer experiments in mice confirmed that these functional antibodies determine subtype-specific cross-protection. Our findings illustrate the potential of NA-specific immunity for achieving broader protection against antigenic drift variants or newly emerging viruses carrying the same NA but a different HA subtype.IMPORTANCE Despite the availability of vaccines, annual influenza virus epidemics cause 250,000 to 500,000 deaths worldwide. Currently licensed inactivated vaccines, which are standardized for the amount of the hemagglutinin (HA) antigen, primarily induce strain-specific antibodies, whereas the immune response to the neuraminidase (NA) antigen, which is also present on the viral surface, is usually low. Using NA-expressing single-cycle vesicular stomatitis virus replicons, we show that the NA antigen conferred protection of mice and ferrets against not only the matched influenza virus strains but also viruses carrying NA proteins from other strains of the same subtype. The extent of protection correlated with the level of cross-reactive NA-inhibiting antibodies. This highlights the potential of the NA antigen for the development of more broadly protective influenza vaccines. Such vaccines may also provide partial protection against newly emerging strains with the same NA but a different HA subtype.


Assuntos
Proteção Cruzada/imunologia , Neuraminidase/antagonistas & inibidores , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Reações Cruzadas , Furões , Hemaglutininas/imunologia , Humanos , Imunidade Celular , Imunização Passiva , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/classificação , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Replicon , Vírus da Estomatite Vesicular Indiana/genética
6.
Front Oncol ; 7: 127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695108

RESUMO

Therapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs). A putative marker of CSCs is CD133 (prominin-1). We have previously described a CD133-targeted oncolytic measles virus (MV-CD133) as a promising approach to specifically eliminate CD133-positive tumor cells. Selectivity was introduced at the level of cell entry by an engineered MV hemagglutinin (H). The H protein was blinded for its native receptors and displayed a CD133-specific single-chain antibody fragment (scFv) as targeting domain. Interestingly, MV-CD133 was more active in killing CD133-positive tumors than the unmodified MV-NSe despite being highly selective for its target cells. To further enhance the antitumoral activity of MV-CD133, we here pursued arming technologies, receptor extension, and chimeras between MV-CD133 and vesicular stomatitis virus (VSV). All newly generated viruses including VSV-CD133 were highly selective in eliminating CD133-positive cells. MV-CD46/CD133 killed in addition CD133-negative cells being positive for the MV receptors. In an orthotopic glioma model, MV-CD46/CD133 and MVSCD-CD133, which encodes the super cytosine deaminase, were most effective. Notably, VSV-CD133 caused fatal neurotoxicity in this tumor model. Use of CD133 as receptor could be excluded as being causative. In a subcutaneous tumor model of hepatocellular cancer, VSV-CD133 revealed the most potent oncolytic activity and also significantly prolonged survival of the mice when injected intravenously. Compared to MV-CD133, VSV-CD133 infected a more than 104-fold larger area of the tumor within the same time period. Our data not only suggest new concepts and approaches toward enhancing the oncolytic activity of CD133-targeted oncolytic viruses but also raise awareness about careful toxicity testing of novel virus types.

7.
Stem Cells Dev ; 24(6): 714-23, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25517513

RESUMO

Hematopoietic stem cells (HSCs) are an important target cell population for gene therapy since they can reconstitute the entire hematopoietic system. HSC-enriched cell populations can be recognized based on cell surface marker expression, such as CD34, which is broadly expressed on immature and partially differentiated cells. In mice, co-expression of CD34 and CD105 was previously shown to be relatively more specific for the most immature, long-term repopulating HSCs. Here, we evaluated whether CD105, which is expressed on 30%-80% of CD34(+) cells, is a marker also for human long-term repopulating HSCs. Therefore, we tracked the mature progeny of CD34(+) cells transduced with the CD105-targeted lentiviral vector CD105-LV in xenotolerant mice. Transduction was blocked with soluble CD105 protein confirming specificity. Importantly, CD105-LV transduced human CD34(+) cells engrafted in NOD-scid IL2Rγ(-/-) mice with up to 20% reporter gene-positive cells detected long term in all human hematopoietic lineages in bone marrow (BM), spleen, and blood. In addition, competitive repopulation experiments in mice showed a superior engraftment of CD105-LV transduced CD34(+) cells in BM and spleen compared with cells transduced with a conventional nontargeted lentiviral vector. Thus, human CD34(+)/CD105(+) cells are enriched for early HSCs with high repopulating capacity. Targeting this cell population with CD105-LV offers a novel gene transfer strategy to reach high engraftment rates of transduced cells and highlights the applicability of receptor-targeted vectors to trace cell subsets offering an alternative to prospective isolation by surface markers.


Assuntos
Antígenos CD/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptores de Superfície Celular/metabolismo , Transplante de Células-Tronco/métodos , Animais , Antígenos CD/genética , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciação Celular , Endoglina , Marcação de Genes , Células-Tronco Hematopoéticas/citologia , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...