Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Brain Commun ; 6(1): fcad252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38162898

RESUMO

Stroke alters blood flow to the brain resulting in damaged tissue and cell death. Moreover, the disruption of cerebral blood flow (perfusion) can be observed in areas surrounding and distal to the lesion. These structurally preserved but suboptimally perfused regions may also affect recovery. Thus, to better understand aphasia recovery, the relationship between cerebral perfusion and language needs to be systematically examined. In the current study, we aimed to evaluate (i) how stroke affects perfusion outside of lesioned areas in chronic aphasia and (ii) how perfusion in specific cortical areas and perilesional tissue relates to language outcomes in aphasia. We analysed perfusion data from a large sample of participants with chronic aphasia due to left hemisphere stroke (n = 43) and age-matched healthy controls (n = 25). We used anatomically defined regions of interest that covered the frontal, parietal, and temporal areas of the perisylvian cortex in both hemispheres, areas typically known to support language, along with several control regions not implicated in language processing. For the aphasia group, we also looked at three regions of interest in the perilesional tissue. We compared perfusion levels between the two groups and investigated the relationship between perfusion levels and language subtest scores while controlling for demographic and lesion variables. First, we observed that perfusion levels outside the lesioned areas were significantly reduced in frontal and parietal regions in the left hemisphere in people with aphasia compared to the control group, while no differences were observed for the right hemisphere regions. Second, we found that perfusion in the left temporal lobe (and most strongly in the posterior part of both superior and middle temporal gyri) and inferior parietal areas (supramarginal gyrus) was significantly related to residual expressive and receptive language abilities. In contrast, perfusion in the frontal regions did not show such a relationship; no relationship with language was also observed for perfusion levels in control areas and all right hemisphere regions. Third, perilesional perfusion was only marginally related to language production abilities. Cumulatively, the current findings demonstrate that blood flow is reduced beyond the lesion site in chronic aphasia and that hypoperfused neural tissue in critical temporoparietal language areas has a negative impact on behavioural outcomes. These results, using perfusion imaging, underscore the critical and general role that left hemisphere posterior temporal regions play in various expressive and receptive language abilities. Overall, the study highlights the importance of exploring perfusion measures in stroke.

2.
J Cogn Neurosci ; 36(1): 155-166, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902578

RESUMO

There is increasing evidence that the left lateral frontal cortex is hierarchically organized such that higher-order regions have an asymmetric top-down influence over lower order regions. However, questions remain about the underlying neuroarchitecture of this hierarchical control organization. Within the frontal cortex, dopamine plays an important role in cognitive control functions, and we hypothesized that dopamine may preferentially influence top-down connections within the lateral frontal hierarchy. Using a randomized, double-blind, within-subject design, we analyzed resting-state fMRI data of 66 healthy young participants who were scanned once each after administration of bromocriptine (a dopamine agonist with preferential affinity for D2 receptor), tolcapone (an inhibitor of catechol-O-methyltransferase), and placebo, to determine whether dopaminergic stimulation modulated effective functional connectivity between hierarchically organized frontal regions in the left hemisphere. We found that dopaminergic drugs modulated connections from the caudal middle frontal gyrus and the inferior frontal sulcus to both rostral and caudal frontal areas. In dorsal frontal regions, effectivity connectivity strength was increased, whereas in ventral frontal regions, effective connectivity strength was decreased. These findings suggest that connections within frontal cortex are differentially modulated by dopamine, which may bias the influence that frontal regions exert over each other.


Assuntos
Catecol O-Metiltransferase , Dopamina , Humanos , Lobo Frontal/fisiologia , Córtex Pré-Frontal/fisiologia , Agonistas de Dopamina/farmacologia , Imageamento por Ressonância Magnética
3.
Sci Adv ; 9(6): eabo1095, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753556

RESUMO

Many legal decisions center on the thoughts or perceptions of some idealized group of individuals, referred to variously as the "average person," "the typical consumer," or the "reasonable person." Substantial concerns exist, however, regarding the subjectivity and vulnerability to biases inherent in conventional means of assessing such responses, particularly the use of self-report evidence. Here, we addressed these concerns by complementing self-report evidence with neural data to inform the mental representations in question. Using an example from intellectual property law, we demonstrate that it is possible to construct a parsimonious neural index of visual similarity that can inform the reasonable person test of trademark infringement. Moreover, when aggregated across multiple participants, this index was able to detect experimenter-induced biases in self-report surveys in a sensitive and replicable fashion. Together, these findings potentially broaden the possibilities for neuroscientific data to inform legal decision-making across a range of settings.

4.
J Neurosci ; 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36041850

RESUMO

The intraparietal sulcus (IPS) has been implicated in numerous functions that range from representation of visual stimuli to action planning, but its role in abstract decision-making has been unclear, in part because low-level functions often act as confounds. Here, we address this problem using a task that dissociates abstract decision-making from sensory salience, attentional control, motor planning, and motor output. Functional MRI data were collected from healthy female and male human subjects while they performed a policy abstraction task requiring use of a more abstract (second-order) rule to select between two less abstract (first order) rules that informed the motor response. By identifying IPS subdivisions with preferential connectivity to prefrontal regions that are differentially responsive to task abstraction, we found that a caudal IPS (cIPS) subregion with strongest connectivity to the pre-premotor cortex was preferentially active for second-order cues, whereas a rostral IPS subregion (rIPS) with strongest connectivity to the dorsal premotor cortex was active during attentional control over first-order cues. These effects for abstraction were seen in addition to cIPS activity that was specific to sensory salience, and rIPS activity that was specific to motor output. Notably, topographic responses to the second-order cue were detected along the caudal-rostral axis of IPS, mirroring the broader organization seen in lateral prefrontal cortex (Badre and D'Esposito, 2007). Together, these data demonstrate that subregions within IPS exhibit activity responsive to policy abstraction, and they suggest that IPS may be organized into frontoparietal subnetworks that support hierarchical cognitive control.SIGNIFICANCE STATEMENTAbstract decision-making allows us to flexibly adapt our behavior to new contexts. Although much previous work has focused on the role of lateral prefrontal cortex in such decisions, the contributions of parietal cortex have been relatively understudied. Here, we demonstrate that spatially segregated subregions of human IPS with strong functional connections to lateral prefrontal cortex demonstrate activity selective for abstract decisions. This activity can be distinguished from responses because of cognitive processes related to sensory salience, attentional control, motor planning, and movement. Together, these findings indicate that different task demands are reflected in the topography of IPS, and they explicitly reveal a role in abstract decision-making.

5.
Neuroimage ; 242: 118472, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34390874

RESUMO

The cognitive effects of pharmacologically enhancing cortical dopamine (DA) tone are variable across healthy human adults. It has been postulated that individual differences in drug responses are linked to baseline cortical DA activity according to an inverted-U-shaped function. To better understand the effect of divergent starting points along this curve on DA drug responses, researchers have leveraged a common polymorphism (rs4680) in the gene encoding the enzyme catechol-O-methyltransferase (COMT) that gives rise to greater (Met allele) or lesser (Val allele) extracellular levels of cortical DA. Here we examined the extent to which changes in resting cortical perfusion following the administration of two mechanistically-distinct dopaminergic drugs vary by COMT genotype, and thereby track predictions of the inverted-U model. Using arterial spin labeling (ASL) and a double-blind, within-subject design, perfusion was measured in 75 healthy, genotyped participants once each after administration of tolcapone (a COMT inhibitor), bromocriptine (a DA D2/3 agonist), and placebo. COMT genotype and drug interacted such that COMT Val homozygotes exhibited increased prefusion in response to both drugs, whereas Met homozygotes did not. Additionally, tolcapone-related perfusion changes in the right inferior frontal gyrus correlated with altered performance on a task of executive function. No comparable effects were found for a genetic polymorphism (rs1800497) affecting striatal DA system function. Together, these results indicate that both the directionality and magnitude of drug-induced perfusion change provide meaningful information about individual differences in response to enhanced cortical DA tone.


Assuntos
Catecol O-Metiltransferase/genética , Dopamina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Adulto , Bromocriptina/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Método Duplo-Cego , Função Executiva/fisiologia , Feminino , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Tolcapona/farmacologia , Adulto Jovem
6.
Transl Psychiatry ; 11(1): 389, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253715

RESUMO

Post-traumatic stress disorder (PTSD) leads to impairments in both cognitive and affective functioning. Animal work suggests that chronic stress reduces dopamine tone, and both animal and human studies argue that changes in dopamine tone influence working memory, a core executive function. These findings give rise to the hypothesis that increasing cortical dopamine tone in individuals with greater PTSD symptomatology should improve working memory performance. In this pharmacological functional magnetic resonance imaging (fMRI) study, 30 US military veterans exhibiting a range of PTSD severity completed an emotional working memory task. Each subject received both placebo and the catechol-O-methyl transferase inhibitor tolcapone, which increases cortical dopamine tone, in randomized, double-blind, counterbalanced fashion. Mnemonic discriminability (calculated with d', an index of the detectability of working memory signals) and response bias were evaluated in the context of task-related brain activations. Subjects with more severe PTSD showed both greater tolcapone-mediated improvements in d' and larger tolcapone-mediated reductions in liberally-biased responding for fearful stimuli. FMRI revealed that tolcapone augmented activity within bilateral frontoparietal control regions during the decision phase of the task. Specifically, tolcapone increased cortical responses to fearful relative to neutral stimuli in higher severity PTSD subjects, and reduced cortical responses to fearful stimuli for lower severity PTSD subjects. Moreover, tolcapone modulated prefrontal connectivity with areas overlapping the default mode network. These findings suggest that enhancing cortical dopamine tone may represent an approach to remediating cognitive and affective dysfunction in individuals with more severe PTSD symptoms.


Assuntos
Dopamina , Transtornos de Estresse Pós-Traumáticos , Encéfalo/metabolismo , Catecol O-Metiltransferase/metabolismo , Inibidores de Catecol O-Metiltransferase , Humanos , Imageamento por Ressonância Magnética , Memória de Curto Prazo , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico
7.
Hum Brain Mapp ; 42(13): 4187-4204, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34143540

RESUMO

In MRI studies, spatial normalization is required to infer results at the group level. In the presence of a brain lesion, such as in stroke patients, the normalization process can be affected by tissue loss, spatial deformations, signal intensity changes, and other stroke sequelae that introduce confounds into the group analysis results. Previously, most neuroimaging studies with lesioned brains have used normalization methods optimized for intact brains, raising potential concerns about the accuracy of the resulting transformations and, in turn, their reported group level results. In this study, we demonstrate the benefits of creating an intermediate, cohort-specific template in conjunction with diffeomorphism-based methods to normalize structural MRI images in stroke patients. We show that including this cohort-specific template improves accuracy compared to standard methods for normalizing lesioned brains. Critically, this method reduces overall differences in normalization accuracy between stroke patients and healthy controls, and may improve the localization and connectivity of BOLD signal in functional neuroimaging data.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Estudos de Coortes , Conjuntos de Dados como Assunto , Humanos
8.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33990466

RESUMO

Real-world decisions are often open ended, with goals, choice options, or evaluation criteria conceived by decision-makers themselves. Critically, the quality of decisions may heavily rely on the generation of options, as failure to generate promising options limits, or even eliminates, the opportunity for choosing them. This core aspect of problem structuring, however, is largely absent from classical models of decision-making, thereby restricting their predictive scope. Here, we take a step toward addressing this issue by developing a neurally inspired cognitive model of a class of ill-structured decisions in which choice options must be self-generated. Specifically, using a model in which semantic memory retrieval is assumed to constrain the set of options available during valuation, we generate highly accurate out-of-sample predictions of choices across multiple categories of goods. Our model significantly and substantially outperforms models that only account for valuation or retrieval in isolation or those that make alternative mechanistic assumptions regarding their interaction. Furthermore, using neuroimaging, we confirm our core assumption regarding the engagement of, and interaction between, semantic memory retrieval and valuation processes. Together, these results provide a neurally grounded and mechanistic account of decisions with self-generated options, representing a step toward unraveling cognitive mechanisms underlying adaptive decision-making in the real world.


Assuntos
Encéfalo/fisiologia , Comportamento de Escolha/fisiologia , Cognição/fisiologia , Tomada de Decisões/fisiologia , Modelos Neurológicos , Adulto , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Web Semântica
9.
J Cogn Neurosci ; 33(9): 1753-1765, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054556

RESUMO

The contents of working memory must be maintained in the face of distraction, but updated when appropriate. To manage these competing demands of stability and flexibility, maintained representations in working memory are complemented by distinct gating mechanisms that selectively transmit information into and out of memory stores. The operations of such dopamine-dependent gating systems in the midbrain and striatum and their complementary dopamine-dependent memory maintenance operations in the cortex may therefore be dissociable. If true, selective increases in cortical dopamine tone should preferentially enhance maintenance over gating mechanisms. To test this hypothesis, tolcapone, a catechol-O-methyltransferase inhibitor that preferentially increases cortical dopamine tone, was administered in a randomized, double-blind, placebo-controlled, within-subject fashion to 49 participants who completed a hierarchical working memory task that varied maintenance and gating demands. Tolcapone improved performance in a condition with higher maintenance requirements and reduced gating demands, reflected in a reduction in the slope of RTs across the distribution. Resting-state fMRI data demonstrated that the degree to which tolcapone improved performance in individual participants correlated with increased connectivity between a region important for stimulus response mappings (left dorsal premotor cortex) and cortical areas implicated in visual working memory, including the intraparietal sulcus and fusiform gyrus. Together, these results provide evidence that augmenting cortical dopamine tone preferentially improves working memory maintenance.


Assuntos
Dopamina , Memória de Curto Prazo , Catecol O-Metiltransferase , Inibidores de Catecol O-Metiltransferase/farmacologia , Método Duplo-Cego , Humanos , Imageamento por Ressonância Magnética , Tolcapona
10.
Psychopharmacology (Berl) ; 237(10): 3139-3148, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32617646

RESUMO

RATIONALE: Individuals suffering from alcohol use disorder (AUD) demonstrate difficulty with decision-making and impulsivity that may be associated with impaired frontal cortical function. Therapeutics that enhance frontal dopamine tone could decrease impulsivity and in turn reduce alcohol consumption in individuals with AUD. OBJECTIVES: To determine if the catechol-O-methyltransferase (COMT) inhibitor tolcapone can attenuate alcohol consumption in individuals with AUD and whether this attenuation correlates with tolcapone-induced changes in laboratory-based decision-making tasks. METHODS: We used daily self-report and a novel group laboratory bar task to assess the effects of randomized double-blind crossover administration of tolcapone (100 mg TID for 5 days) on alcohol consumption and laboratory tasks assessing impulsivity in 55 non-treatment-seeking subjects with AUD. RESULTS: Tolcapone significantly reduced self-reported alcohol consumption (t (54) = 2.05, p = 0.045). The effects of tolcapone on drinking significantly correlated with changes in impulsive decision-making, such that subjects with the greatest decrease in impulsive choice on tolcapone also reported the greatest decrease in alcohol consumption (r (45) = 0.40, p = 0.0053). We did not see effects of tolcapone on laboratory bar consumption. Adverse event (AE) reporting was low, with no significant difference in frequency or severity of AEs on tolcapone versus placebo. CONCLUSIONS: These data demonstrate that COMT inhibitors such as tolcapone may be useful therapeutics for AUD. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02740582.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Comportamento de Escolha/efeitos dos fármacos , Comportamento Impulsivo/efeitos dos fármacos , Tolcapona/uso terapêutico , Adulto , Consumo de Bebidas Alcoólicas/psicologia , Consumo de Bebidas Alcoólicas/tendências , Alcoolismo/psicologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Comportamento de Escolha/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Comportamento Impulsivo/fisiologia , Masculino , Tolcapona/farmacologia , Adulto Jovem
11.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341121

RESUMO

Gambling disorder is a behavioral addiction associated with impairments in value-based decision-making and cognitive control. These functions are thought to be regulated by dopamine within fronto-striatal circuits, but the role of altered dopamine neurotransmission in the etiology of gambling disorder remains controversial. Preliminary evidence suggests that increasing frontal dopamine tone might improve cognitive functioning in gambling disorder. We therefore examined whether increasing frontal dopamine tone via a single dose of the catechol-O-methyltransferase (COMT) inhibitor tolcapone would reduce risky choice in human gamblers (n = 14) in a randomized double-blind placebo-controlled crossover study. Data were analyzed using hierarchical Bayesian parameter estimation and a combined risky choice drift diffusion model (DDM). Model comparison revealed a nonlinear mapping from value differences to trial-wise drift rates, confirming recent findings. An increase in risk-taking under tolcapone versus placebo was about five times more likely, given the data, than a decrease [Bayes factor (BF) = 0.2]. Examination of drug effects on diffusion model parameters revealed that an increase in the value dependency of the drift rate under tolcapone was about thirteen times more likely than a decrease (BF = 0.073). In contrast, a reduction in the maximum drift rate under tolcapone was about seven times more likely than an increase (BF = 7.51). Results add to previous work on COMT inhibitors in behavioral addictions and to mounting evidence for the applicability of diffusion models in value-based decision-making. Future work should focus on individual genetic, clinical and cognitive factors that might account for heterogeneity in the effects of COMT inhibition.


Assuntos
Catecol O-Metiltransferase , Jogo de Azar , Teorema de Bayes , Catecol O-Metiltransferase/genética , Estudos Cross-Over , Dopamina , Humanos
12.
J Cogn Neurosci ; 32(5): 804-821, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31905090

RESUMO

Dopamine (DA) has been implicated in modulating multiple cognitive control processes, including the robust maintenance of task sets and memoranda in the face of distractors (cognitive stability) and, conversely, the ability to switch task sets or update the contents of working memory when it is advantageous to do so (cognitive flexibility). In humans, the limited specificity of available pharmacological probes has posed a challenge for understanding the mechanisms by which DA, acting on multiple receptor families across the PFC and striatum, differentially influences these cognitive processes. Using a within-subject, placebo-controlled design, we contrasted the impact of two mechanistically distinct DA drugs, tolcapone (an inhibitor of catechol-O-methyltransferase [COMT], a catecholamine inactivator) and bromocriptine (a DA agonist with preferential affinity for the D2 receptor), on the maintenance and switching of task rules. Given previous work demonstrating that drug effects on behavior are dependent on baseline DA tone, participants were stratified according to genetic polymorphisms associated with cortical (COMT Val158Met) and striatal (Taq1A) DA system function. Our results were partially consistent with an inverted-U-shaped relationship between tolcapone and robust rule maintenance (interaction with COMT genotype) and between bromocriptine and cued rule switching (interaction with Taq1A genotype). However, when task instructions were ambiguous, a third relationship emerged to explain drug effects on spontaneous task switching (interaction of COMT genotype and bromocriptine). Together, this pattern of results suggests that the effects of DA drugs vary not only as a function of the DA system component upon which they act but also on subtle differences in task demands and context.


Assuntos
Bromocriptina/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/genética , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , Função Executiva/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Tolcapona/farmacologia , Adulto , Bromocriptina/administração & dosagem , Inibidores de Catecol O-Metiltransferase/administração & dosagem , Agonistas de Dopamina/administração & dosagem , Feminino , Humanos , Masculino , Tolcapona/administração & dosagem , Adulto Jovem
13.
Comput Psychiatr ; 4: 40-60, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33426270

RESUMO

Social and decision-making deficits are often the first symptoms of neuropsychiatric disorders. In recent years, economic games, together with computational models of strategic learning, have been increasingly applied to the characterization of individual differences in social behavior, as well as their changes across time due to disease progression, treatment, or other factors. At the same time, the high dimensionality of these data poses an important challenge to statistical estimation of these models, potentially limiting the adoption of such approaches in patients and special populations. We introduce a hierarchical Bayesian implementation of a class of strategic learning models, experience-weighted attraction (EWA), that is widely used in behavioral game theory. Importantly, this approach provides a unified framework for capturing between- and within-participant variation, including changes associated with disease progression, comorbidity, and treatment status. We show using simulated data that our hierarchical Bayesian approach outperforms representative agent and individual-level estimation methods that are commonly used in extant literature, with respect to parameter estimation and uncertainty quantification. Furthermore, using an empirical dataset, we demonstrate the value of our approach over competing methods with respect to balancing model fit and complexity. Consistent with the success of hierarchical Bayesian approaches in other areas of behavioral science, our hierarchical Bayesian EWA model represents a powerful and flexible tool to apply to a wide range of behavioral paradigms for studying the interplay between complex human behavior and biological factors.

14.
Cortex ; 124: 54-65, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837518

RESUMO

Patients with Alzheimer's disease and other dementias often make poor financial decisions, but it remains unclear whether this reflects specific failures in decision-making or more general deficits in episodic and working memory. We investigated how patients with Alzheimer's disease, behavioral variant frontotemporal dementia (bvFTD), and semantic variant primary progressive aphasia (svPPA) apply information in an intertemporal choice task between smaller intermediate and larger delayed rewards, with minimal memory demands. Multilevel modeling estimated subject-level sensitivities to three attributes of choice (the relative difference in reward magnitude, delay length, and absolute reward magnitudes) as well as baseline impulsivity. While baseline impulsivity in patients with Alzheimer's disease did not differ from controls, patients with bvFTD and svPPA were more impulsive than controls overall. Patients with Alzheimer's disease or bvFTD were less sensitive than controls to all three choice attributes, whereas patients with svPPA were less sensitive than controls to two attributes. Attenuated sensitivity to information presented during the choice was associated across all subjects with dorsomedial prefrontal atrophy for all three choice attributes. Given the minimal memory demands of our task, these findings suggest specific mechanisms underlying decision-making failures beyond episodic and working memory deficits in dementia.


Assuntos
Doença de Alzheimer , Afasia Primária Progressiva , Demência Frontotemporal , Doenças Neurodegenerativas , Afasia Primária Progressiva/diagnóstico por imagem , Atrofia , Humanos
15.
Curr Addict Rep ; 6(2): 65-74, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31728265

RESUMO

PURPOSE OF REVIEW: To address variation in the severity of gambling disorder, this review evaluates the contribution of mesocorticolimbic dopamine neurons to potential behavioral endophenotypes, the influence of individual differences in the dopamine system on gambling and related behaviors, and the possible role for dopaminergic medications in the treatment of gambling disorder. RECENT FINDINGS: Newer work has suggested that dopaminergic dysfunction can lead to increased reward anticipation and a greater sensitivity to uncertainty, which in turn may drive addictive gambling behaviors. In addition, increased impulsivity, a well-recognized risk factor for gambling disorder, has been linked to dopaminergic dysfunction. More recently, emerging evidence has suggested that dopaminergic medications can influence the discounting of delayed rewards. SUMMARY: Dopaminergic drugs that increase the salience of long-term over short-term goals may ameliorate symptoms of impulsive individuals with gambling disorder. More broadly, improved understanding of intermediate behavioral and other phenotypes with a defined neurobiological substrate may allow for personalized treatment of gambling disorder and other psychiatric conditions.

16.
Handb Clin Neurol ; 163: 61-72, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31590748

RESUMO

Functional imaging methodology has revolutionized our ability to understand brain-behavior relationships. In contrast with the static images obtained with standard imaging methods, functional images permit us to track brain activity as humans view stimuli, hear sounds, consider choices, and make decisions. The insights now possible because of this technology have not only provided new potential markers for disease but have also permitted questions of neural mechanism to be addressed in living humans. Because of the breadth and depth of research that directly or tangentially touches upon functional imaging, it is impossible to do justice to the various subfields, analysis streams, and methodological complexities in one chapter. Instead, this chapter will provide a brief overview of the underlying conceptual framework, basic analytic techniques, and details of the imaging methodologies available for the acquisition of functional imaging data.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem Funcional/métodos , Mapeamento Encefálico/métodos , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética
17.
Psychopharmacology (Berl) ; 235(10): 2783-2793, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30027496

RESUMO

RATIONALE: Impairment in time perception, a critical component of decision-making, represents a risk factor for psychiatric conditions including substance abuse. A therapeutic that ameliorates this impairment could be advantageous in the treatment of impulsivity and decision-making disorders. OBJECTIVES: Here we hypothesize that the catechol-O-methyltransferase (COMT) inhibitor tolcapone, which increases dopamine tone in frontal cortex (Ceravolo et al Synapse 43:201-207, 2002), improves time perception, with predictive behavioral, genetic, and neurobiological components. METHODS: Subjects (n = 66) completed a duration estimation task and other behavioral testing in each of two sessions after receiving a single oral dose of tolcapone (200 mg) or placebo in randomized, double-blind, counterbalanced, crossover fashion. Resting state fMRI data were obtained in a subset of subjects (n = 40). Subjects were also genotyped for the COMT (rs4680) polymorphism. RESULTS: Time perception was significantly improved across four proximal time points ranging from 5 to 60 s (T(524) = 2.04, p = 0.042). The degree of this improvement positively correlated with subjective measures of stress, depression, and alcohol consumption and was most robust in carriers of the COMT Val158 allele. Using seed regions defined by a previous meta-analysis (Wiener et al Neuroimage 49:1728-1740, 2010), we found not only that a connection from right inferior frontal gyrus (RIFG) to right putamen decreases in strength on tolcapone versus placebo (p < 0.05, corrected), but also that the strength of this decrease correlates inversely with the increase in duration estimation on tolcapone versus placebo (r = - 0.37, p = 0.02). CONCLUSIONS: Compressed time perception can be ameliorated by administration of tolcapone. Additional studies should be conducted to determine whether COMT inhibitors may be effective in treating decision-making disorders and addictive behaviors.


Assuntos
Inibidores de Catecol O-Metiltransferase/farmacologia , Dopamina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Percepção do Tempo/efeitos dos fármacos , Tolcapona/farmacologia , Adulto , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Feminino , Previsões , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Percepção do Tempo/fisiologia , Adulto Jovem
18.
Psychopharmacology (Berl) ; 235(4): 1295-1305, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427081

RESUMO

RATIONALE: The prefrontal cortex (PFC) and basal ganglia (BG) have been associated with cognitive stability and cognitive flexibility, respectively. We hypothesized that increasing PFC dopamine tone by administering tolcapone (a catechol-O-methyltransferase (COMT) inhibitor) to human subjects should promote stability; conversely, increasing BG dopamine tone by administering bromocriptine (a D2 receptor agonist) should promote flexibility. OBJECTIVE: We assessed these hypotheses by administering tolcapone, bromocriptine, and a placebo to healthy subjects who performed a saccadic eye movement task requiring stability and flexibility. METHODS: We used a randomized, double-blind, within-subject design that was counterbalanced across drug administration sessions. In each session, subjects were cued to prepare for a pro-saccade (look towards a visual stimulus) or anti-saccade (look away) on every trial. On 60% of the trials, subjects were instructed to switch the response already in preparation. We hypothesized that flexibility would be required on switch trials, whereas stability would be required on non-switch trials. The primary measure of performance was efficiency (the percentage correct divided by reaction time for each trial type). RESULTS: Subjects were significantly less efficient across all trial types under tolcapone, and there were no significant effects of bromocriptine. After grouping subjects based on Val158Met COMT polymorphism, we found that Met/Met and Val/Met subjects (greater PFC dopamine) were less efficient compared to Val/Val subjects. CONCLUSIONS: Optimal behavior was based on obeying the environmental stimuli, and we found reduced efficiency with greater PFC dopamine tone. We suggest that greater PFC dopamine interfered with the ability to flexibly follow the environment.


Assuntos
Atenção/efeitos dos fármacos , Bromocriptina/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Cognição/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Tolcapona/farmacologia , Adulto , Catecol O-Metiltransferase/genética , Método Duplo-Cego , Feminino , Humanos , Masculino , Tempo de Reação/efeitos dos fármacos , Movimentos Sacádicos/efeitos dos fármacos , Adulto Jovem
19.
J Neurophysiol ; 117(6): 2088-2103, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28250149

RESUMO

To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects' decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings.NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Objetivos , Percepção de Movimento/fisiologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Discriminação Psicológica/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Psicológicos , Testes Neuropsicológicos , Oxigênio/sangue , Estimulação Luminosa/métodos , Tempo de Reação , Adulto Jovem
20.
Neuroimage Clin ; 13: 339-348, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28066708

RESUMO

Failures of self-regulation in problem and pathological gambling (PPG) are thought to emerge from failures of top-down control, reflected neurophysiologically in a reduced capacity of prefrontal cortex to influence activity within subcortical structures. In patients with addictions, these impairments have been argued to alter evaluation of reward within dopaminergic neuromodulatory systems. Previously we demonstrated that augmenting dopamine tone in frontal cortex via use of tolcapone, an inhibitor of the dopamine-degrading enzyme catechol-O-methyltransferase (COMT), reduced delay discounting, a measure of impulsivity, in healthy subjects. To evaluate this potentially translational approach to augmenting prefrontal inhibitory control, here we hypothesized that increasing cortical dopamine tone would reduce delay discounting in PPG subjects in proportion to its ability to augment top-down control. To causally test this hypothesis, we administered the COMT inhibitor tolcapone in a randomized, double-blind, placebo-controlled, within-subject study of 17 PPG subjects who performed a delay discounting task while functional MRI images were obtained. In this subject population, we found that greater BOLD activity during the placebo condition within the right inferior frontal cortex (RIFC), a region thought to be important for inhibitory control, correlated with greater declines in impulsivity on tolcapone versus placebo. Intriguingly, connectivity between RIFC and the right striatum, and not the level of activity within RIFC itself, increased on tolcapone versus placebo. Together, these findings support the hypothesis that tolcapone-mediated increases in top-down control may reduce impulsivity in PPG subjects, a finding with potential translational relevance for gambling disorders, and for behavioral addictions in general.


Assuntos
Benzofenonas/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Conectoma/métodos , Desvalorização pelo Atraso/fisiologia , Jogo de Azar/tratamento farmacológico , Nitrofenóis/farmacologia , Córtex Pré-Frontal , Estriado Ventral , Adulto , Benzofenonas/administração & dosagem , Inibidores de Catecol O-Metiltransferase/administração & dosagem , Desvalorização pelo Atraso/efeitos dos fármacos , Método Duplo-Cego , Feminino , Jogo de Azar/diagnóstico por imagem , Jogo de Azar/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Nitrofenóis/administração & dosagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Tolcapona , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...