Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 69(11): 1607-1611, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38704356
2.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668191

RESUMO

Photonic neural networks (PNNs), utilizing light-based technologies, show immense potential in artificial intelligence (AI) and computing. Compared to traditional electronic neural networks, they offer faster processing speeds, lower energy usage, and improved parallelism. Leveraging light's properties for information processing could revolutionize diverse applications, including complex calculations and advanced machine learning (ML). Furthermore, these networks could address scalability and efficiency challenges in large-scale AI systems, potentially reshaping the future of computing and AI research. In this comprehensive review, we provide current, cutting-edge insights into diverse types of PNNs crafted for both imaging and computing purposes. Additionally, we delve into the intricate challenges they encounter during implementation, while also illuminating the promising perspectives they introduce to the field.

3.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38400324

RESUMO

Photosensitive materials are widely used for the direct fabrication of surface relief gratings (SRGs) without the selective etching of the material. It is known that the interferometric approach makes it possible to fabricate SRGs with submicron and even subwavelength periods. However, to change the period of the written SRGs, it is necessary to change the convergence angle, shift a sample, and readjust the interferometric setup. Recently, it was shown that structured laser beams with predetermined, periodically modulated polarization distributions can also be used to fabricate SRGs. A structured laser beam with the desired polarization distribution can be formed with just one polarizing optical element-for example, the so-called depolarizer, a patterned micro-retarder array. The use of such stacked elements makes it possible to directly control the modulation period of the polarization of the generated laser beam. We show that this approach allows one to fabricate SRGs with submicron periods. Moreover, the addition of q-plates, elements effectively used to generate cylindrical vector beams with polarization singularities, allows the efficient formation of fork polarization gratings (FPGs) and the fabrication of higher-order fork-shaped SRGs. Full control of the parameters of the generated FPGs is possible. We demonstrate the formation of FPGs of higher orders (up to 12) by only adding first- and second-order q-plates and half-wave plates to the depolarizers. In this work, we numerically and experimentally study the parameters of various types of SRGs formed using these stacked polarizing elements and show the significant potential of this method for the laser processing of photosensitive materials, which often also serve as polarization sensors.

4.
Biosensors (Basel) ; 13(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887126

RESUMO

According to the age-old adage, while eyes are often considered the gateway to the soul, they might also provide insights into a more pragmatic aspect of our health: blood sugar levels. This potential breakthrough could be realized through the development of smart contact lenses (SCLs). Although contact lenses were first developed for eyesight correction, new uses have recently become available. In the near future, it might be possible to monitor a variety of ocular and systemic disorders using contact lens sensors. Within the realm of glaucoma, SCLs present a novel prospect, offering a potentially superior avenue compared to traditional management techniques. These lenses introduce the possibility of non-invasive and continuous monitoring of intraocular pressure (IOP) while also enabling the personalized administration of medication as and when needed. This convergence holds great promise for advancing glaucoma care. In this review, recent developments in SCLs, including their potential applications, such as IOP and glucose monitoring, are briefly discussed.


Assuntos
Lentes de Contato , Glaucoma , Humanos , Automonitorização da Glicemia , Glicemia , Pressão Intraocular
5.
Biosensors (Basel) ; 13(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37754069

RESUMO

Optical fibre sensors are an essential subset of optical fibre technology, designed specifically for sensing and measuring several physical parameters. These sensors offer unique advantages over traditional sensors, making them gradually more valuable in a wide range of applications. They can detect extremely small variations in the physical parameters they are designed to measure, such as analytes in the case of biosensing. This high sensitivity allows them to detect subtle variations in temperature, pressure, strain, the refractive index of analytes, vibration, and other environmental factors with exceptional accuracy. Moreover, these sensors enable remote sensing capabilities. Since light signals are used to carry information, the sensing elements can be placed at distant or inaccessible sites and still communicate the data back to the central monitoring system without signal degradation. In recent times, different attractive configurations and approaches have been proposed to enhance the sensitivity of the optical fibre-based sensor and are briefly explained in this review. However, we believe that the choice of optical fibre sensor configuration should be designated based on the specific application. As these sensors continue to evolve and improve, they will play an increasingly vital role in critical monitoring and control applications across various industries.

6.
Micromachines (Basel) ; 14(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374701

RESUMO

Optical switching is an essential part of photonic integrated circuits and the focus of research at the moment. In this research, an optical switch design working on the phenomenon of guided-mode resonances in a 3D photonic-crystal-based structure is reported. The optical-switching mechanism is studied in a dielectric slab-waveguide-based structure operating in the near-infrared range in a telecom window of 1.55 µm. The mechanism is investigated via the interference of two signals, i.e., the data signal and the control signal. The data signal is coupled into the optical structure and filtered utilizing guided-mode resonance, whereas the control signal is index-guided in the optical structure. The amplification or de-amplification of the data signal is controlled by tuning the spectral properties of the optical sources and structural parameters of the device. The parameters are optimized first using a single-cell model with periodic boundary conditions and later in a finite 3D-FDTD model of the device. The numerical design is computed in an open-source Finite Difference Time Domain simulation platform. Optical amplification in the range of 13.75% is achieved in the data signal with a decrease in the linewidth up to 0.0079 µm, achieving a quality factor of 114.58. The proposed device presents great potential in the field of photonic integrated circuits, biomedical technology, and programmable photonics.

7.
Biosensors (Basel) ; 13(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37232929

RESUMO

In contemporary science and technology, photonic sensors are essential. They may be made to be extremely resistant to some physical parameters while also being extremely sensitive to other physical variables. Most photonic sensors may be incorporated on chips and operate with CMOS technology, making them suitable for use as extremely sensitive, compact, and affordable sensors. Photonic sensors can detect electromagnetic (EM) wave changes and convert them into an electric signal due to the photoelectric effect. Depending on the requirements, scientists have found ways to develop photonic sensors based on several interesting platforms. In this work, we extensively review the most generally utilized photonic sensors for detecting vital environmental parameters and personal health care. These sensing systems include optical waveguides, optical fibers, plasmonics, metasurfaces, and photonic crystals. Various aspects of light are used to investigate the transmission or reflection spectra of photonic sensors. In general, resonant cavity or grating-based sensor configurations that work on wavelength interrogation methods are preferred, so these sensor types are mostly presented. We believe that this paper will provide insight into the novel types of available photonic sensors.


Assuntos
Eletricidade , Fótons , Fibras Ópticas , Tecnologia
8.
Micromachines (Basel) ; 14(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241703

RESUMO

Optical ring resonators (RRs) are a novel sensing device that has recently been developed for several sensing applications. In this review, RR structures based on three widely explored platforms, namely silicon-on-insulator (SOI), polymers, and plasmonics, are reviewed. The adaptability of these platforms allows for compatibility with different fabrication processes and integration with other photonic components, providing flexibility in designing and implementing various photonic devices and systems. Optical RRs are typically small, making them suitable for integration into compact photonic circuits. Their compactness allows for high device density and integration with other optical components, enabling complex and multifunctional photonic systems. RR devices realized on the plasmonic platform are highly attractive, as they offer extremely high sensitivity and a small footprint. However, the biggest challenge to overcome is the high fabrication demand related to such nanoscale devices, which limits their commercialization.

9.
Materials (Basel) ; 16(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37048923

RESUMO

In this paper a perfect absorber with a photonic crystal cavity (PhC-cavity) is numerically investigated for carbon dioxide (CO2) gas sensing application. Metallic structures in the form of silver are introduced for harnessing plasmonic effects to achieve perfect absorption. The sensor comprises a PhC-cavity, silver (Ag) stripes, and a host functional material-Polyhexamethylene biguanide polymer-deposited on the surface of the sensor. The PhC-cavity is implemented within the middle of the cell, helping to penetrate the EM waves into the sublayers of the structure. Therefore, corresponding to the concentration of the CO2 gas, as it increases, the refractive index of the host material decreases, causing a blue shift in the resonant wavelength and vice versa of the device. The sensor is used for the detection of 0-524 parts per million (ppm) concentration of the CO2 gas, with a maximum sensitivity of 17.32 pm (pico meter)/ppm achieved for a concentration of 366 ppm with a figure of merit (FOM) of 2.9 RIU-1. The four-layer device presents a straightforward and compact design that can be adopted in various sensing applications by using suitable host functional materials.

10.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421155

RESUMO

Globally, there is active development of photonic sensors incorporating multidisciplinary research. The ultimate objective is to develop small, low-cost, sensitive, selective, quick, durable, remote-controllable sensors that are resistant to electromagnetic interference. Different photonic sensor designs and advances in photonic frameworks have shown the possibility to realize these capabilities. In this review paper, the latest developments in the field of optical waveguide and fiber-based sensors which can serve for environmental monitoring are discussed. Several important topics such as toxic gas, water quality, indoor environment, and natural disaster monitoring are reviewed.


Assuntos
Monitoramento Ambiental , Fibras Ópticas , Óptica e Fotônica , Qualidade da Água
11.
Sensors (Basel) ; 22(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36236463

RESUMO

It is known that the astigmatic transformation can be used to analyze the topological charge of a vortex beam, which can be implemented by using various optical methods. In this case, in order to form an astigmatic beam pattern suitable for the clear detection of a topological charge, an optical adjustment is often required (changing the lens tilt and/or the detection distance). In this article, we propose to use multi-channel diffractive optical elements (DOEs) for the simultaneous implementation of the astigmatic transformations of various types and levels. Such multi-channel DOEs make it possible to insert several types of astigmatic aberrations of different levels into the analyzed vortex beam simultaneously, and to form a set of aberration-transformed beam patterns in different diffraction orders in one detection plane. The proposed approach greatly simplifies the analysis of the characteristics of a vortex beam based on measurements in the single plane without additional adjustments. In this article, a detailed study of the effect of various types of astigmatic aberrations based on a numerical simulation and experiments was carried out, which confirmed the effectiveness of the proposed approach.

12.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298142

RESUMO

A high-efficiency dual-purpose plasmonic perfect absorber sensor based on LiNbO3 and graphene layers was investigated in this paper for the refractive index and thermal sensing. The sensor design was kept simple for easy fabrication, comprising a LiNbO3 substrate with a quartz layer, thin layer of graphene, four gold nanorods, and a nanocavity in each unit cell. The nanocavity is located in the middle of the cell to facilitate the penetration of EM energy to the subsurface layers. The proposed sensor design achieved an output response of 99.9% reflection, which was easy to detect without having any specialized conditions for operability. The performance of the device was numerically investigated for the biomedical refractive index range of 1.33 to 1.40, yielding a sensitivity value of 981 nm/RIU with a figure-of-merit of 61.31 RIU-1. By including an additional polydimethylsiloxane polymer functional layer on the top, the device was also tested as a thermal sensor, which yielded a sensitivity level of -0.23 nm/°C.


Assuntos
Grafite , Refratometria , Quartzo , Temperatura , Ouro , Dimetilpolisiloxanos
13.
Biosensors (Basel) ; 12(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884300

RESUMO

A Bragg grating (BG) is a one-dimensional optical device that may reflect a specific wavelength of light while transmitting all others. It is created by the periodic fluctuation of the refractive index in the waveguide (WG). The reflectivity of a BG is specified by the index modulation profile. A Bragg grating is a flexible optical filter that has found broad use in several scientific and industrial domains due to its straightforward construction and distinctive filtering capacity. WG BGs are also widely utilized in sensing applications due to their easy integration and high sensitivity. Sensors that utilize optical signals for sensing have several benefits over conventional sensors that use electric signals to achieve detection, including being lighter, having a strong ability to resist electromagnetic interference, consuming less power, operating over a wider frequency range, performing consistently, operating at a high speed, and experiencing less loss and crosstalk. WG BGs are simple to include in chips and are compatible with complementary metal-oxide-semiconductor (CMOS) manufacturing processes. In this review, WG BG structures based on three major optical platforms including semiconductors, polymers, and plasmonics are discussed for filtering and sensing applications. Based on the desired application and available fabrication facilities, the optical platform is selected, which mainly regulates the device performance and footprint.


Assuntos
Refratometria , Semicondutores , Desenho de Equipamento , Polímeros/química , Refratometria/métodos
14.
Nanomaterials (Basel) ; 12(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808012

RESUMO

For many years, optics has been employed in computing, although the major focus has been and remains to be on connecting parts of computers, for communications, or more fundamentally in systems that have some optical function or element (optical pattern recognition, etc.). Optical digital computers are still evolving; however, a variety of components that can eventually lead to true optical computers, such as optical logic gates, optical switches, neural networks, and spatial light modulators have previously been developed and are discussed in this paper. High-performance off-the-shelf computers can accurately simulate and construct more complicated photonic devices and systems. These advancements have developed under unusual circumstances: photonics is an emerging tool for the next generation of computing hardware, while recent advances in digital computers have empowered the design, modeling, and creation of a new class of photonic devices and systems with unparalleled challenges. Thus, the review of the status and perspectives shows that optical technology offers incredible developments in computational efficiency; however, only separately implemented optical operations are known so far, and the launch of the world's first commercial optical processing system was only recently announced. Most likely, the optical computer has not been put into mass production because there are still no good solutions for optical transistors, optical memory, and much more that acceptance to break the huge inertia of many proven technologies in electronics.

15.
Materials (Basel) ; 15(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591609

RESUMO

In this work, fabrication of a dielectric photonic crystal device and numerical study of its spectral characteristics as a refractive index sensor are presented for near infrared range. The proposed nanosensor device is composed of low-cost dielectric materials, i.e., silicon dioxide and niobium pentoxide, and is fabricated using focused ion-beam milling lithography. In the first part, the fabrication process of the device is discussed, along with the process parameters and their effects on the structural properties of the resulting photonic crystal elements. In the second part, the device is numerically tested as a sensor for the biological refractive index range of 1.33 to 1.4. The performance considerations of the biosensor device are studied for 12 different structural profiles based on the fabrication results. It is shown that the angular-wall-profile of the fabricated structures downgrades the performance of the sensor, and the optimum value of hole depth should be in the range of 930-1500 nm to get the best performance. A sensitivity of 185.117 nm/RIU and a figure of merit of 9.7 were recorded for the optimum design of the device; however, a maximum sensitivity of 296.183 nm/RIU and a figure-of-merit of 13.184 RIU-1 were achieved. The device is recommended for a variety of biosensing applications due to its inert material properties, stable design and easy integration with fiber-optic setups.

16.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159679

RESUMO

Currently, old-style personal Medicare techniques rely mostly on traditional methods, such as cumbersome tools and complicated processes, which can be time consuming and inconvenient in some circumstances. Furthermore, such old methods need the use of heavy equipment, blood draws, and traditional bench-top testing procedures. Invasive ways of acquiring test samples can potentially cause patient discomfort and anguish. Wearable sensors, on the other hand, may be attached to numerous body areas to capture diverse biochemical and physiological characteristics as a developing analytical tool. Physical, chemical, and biological data transferred via the skin are used to monitor health in various circumstances. Wearable sensors can assess the aberrant conditions of the physical or chemical components of the human body in real time, exposing the body state in time, thanks to unintrusive sampling and high accuracy. Most commercially available wearable gadgets are mechanically hard components attached to bands and worn on the wrist, with form factors ultimately constrained by the size and weight of the batteries required for the power supply. Basic physiological signals comprise a lot of health-related data. The estimation of critical physiological characteristics, such as pulse inconstancy or variability using photoplethysmography (PPG) and oxygen saturation in arterial blood using pulse oximetry, is possible by utilizing an analysis of the pulsatile component of the bloodstream. Wearable gadgets with "skin-like" qualities are a new type of automation that is only starting to make its way out of research labs and into pre-commercial prototypes. Flexible skin-like sensing devices have accomplished several functionalities previously inaccessible for typical sensing devices due to their deformability, lightness, portability, and flexibility. In this paper, we studied the recent advancement in battery-powered wearable sensors established on optical phenomena and skin-like battery-free sensors, which brings a breakthrough in wearable sensing automation.

17.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616028

RESUMO

One of the fastest-expanding study areas in optics over the past decade has been metasurfaces (MSs). These subwavelength meta-atom-based ultrathin arrays have been developed for a broad range of functions, including lenses, polarization control, holography, coloring, spectroscopy, sensors, and many more. They allow exact control of the many properties of electromagnetic waves. The performance of MSs has dramatically improved because of recent developments in nanofabrication methods, and this concept has developed to the point that it may be used in commercial applications. In this review, a vital topic of sensing has been considered and an up-to-date study has been carried out. Three different kinds of MS absorber sensor formations, all-dielectric, all-metallic, and hybrid configurations, are presented for biochemical sensing applications. We believe that this review paper will provide current knowledge on state-of-the-art sensing devices based on MSs.

18.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36617009

RESUMO

In this paper, we present a hybrid refractive-diffractive lens that, when paired with a deep neural network-based image reconstruction, produces high-quality, real-world images with minimal artifacts, reaching a PSNR of 28 dB on the test set. Our diffractive element compensates for the off-axis aberrations of a single refractive element and has reduced chromatic aberrations across the visible light spectrum. We also describe our training set augmentation and novel quality criteria called "false edge level" (FEL), which validates that the neural network produces visually appealing images without artifacts under a wide range of ISO and exposure settings. Our quality criteria (FEL) enabled us to include real scene images without a corresponding ground truth in the training process.


Assuntos
Lentes , Óptica e Fotônica , Refração Ocular , Luz , Processamento de Imagem Assistida por Computador
19.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641014

RESUMO

Axicon is a versatile optical element for forming a zero-order Bessel beam, including high-power laser radiation schemes. Nevertheless, it has drawbacks such as the produced beam's parameters being dependent on a particular element, the output beam's intensity distribution being dependent on the quality of element manufacturing, and uneven axial intensity distribution. To address these issues, extensive research has been undertaken to develop nondiffracting beams using a variety of advanced techniques. We looked at four different and special approaches for creating nondiffracting beams in this article. Diffractive axicons, meta-axicons-flat optics, spatial light modulators, and photonic integrated circuit-based axicons are among these approaches. Lately, there has been noteworthy curiosity in reducing the thickness and weight of axicons by exploiting diffraction. Meta-axicons, which are ultrathin flat optical elements made up of metasurfaces built up of arrays of subwavelength optical antennas, are one way to address such needs. In addition, when compared to their traditional refractive and diffractive equivalents, meta-axicons have a number of distinguishing advantages, including aberration correction, active tunability, and semi-transparency. This paper is not intended to be a critique of any method. We have outlined the most recent advancements in this field and let readers determine which approach best meets their needs based on the ease of fabrication and utilization. Moreover, one section is devoted to applications of axicons utilized as sensors of optical properties of devices and elements as well as singular beams states and wavefront features.

20.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684992

RESUMO

A multipurpose plasmonic sensor design based on a metal-insulator-metal (MIM) waveguide is numerically investigated in this paper. The proposed design can be instantaneously employed for biosensing and temperature sensing applications. The sensor consists of two simple resonant cavities having a square and circular shape, with the side coupled to an MIM bus waveguide. For biosensing operation, the analytes can be injected into the square cavity while a thermo-optic polymer is deposited in the circular cavity, which provides a shift in resonance wavelength according to the variation in ambient temperature. Both sensing processes work independently. Each cavity provides a resonance dip at a distinct position in the transmission spectrum of the sensor, which does not obscure the analysis process. Such a simple configuration embedded in the single-chip can potentially provide a sensitivity of 700 nm/RIU and -0.35 nm/°C for biosensing and temperature sensing, respectively. Furthermore, the figure of merit (FOM) for the biosensing module and temperature sensing module is around 21.9 and 0.008, respectively. FOM is the ratio between the sensitivity of the device and width of the resonance dip. We suppose that the suggested sensor design can be valuable in twofold ways: (i) in the scenarios where the testing of the biological analytes should be conducted in a controlled temperature environment and (ii) for reducing the influence on ambient temperature fluctuations on refractometric measurements in real-time mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...