Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33021618

RESUMO

Characterizing the high-strain-rate and high-strain mechanics of soft materials is critical to understanding the complex behavior of polymers and various dynamic injury mechanisms, including traumatic brain injury. However, their dynamic mechanical deformation under extreme conditions is technically difficult to quantify and often includes irreversible damage. To address such challenges, we investigate an experimental method, which allows quantification of the extreme mechanical properties of soft materials using ultrafast stroboscopic imaging of highly reproducible laser-induced cavitation events. As a reference material, we characterize variably cross-linked polydimethylsiloxane specimens using this method. The consistency of the laser-induced cavitation is achieved through the introduction of laser absorbing seed microspheres. Based on a simplified viscoelastic model, representative high-strain-rate shear moduli and viscosities of the soft specimens are quantified across different degrees of crosslinking. The quantified rheological parameters align well with the time-temperature superposition prediction of dynamic mechanical analysis. The presented method offers significant advantages with regard to quantifying high-strain rate, irreversible mechanical properties of soft materials and tissues, compared to other methods that rely upon the cyclic dynamics of cavitation. These advances are anticipated to aid in the understanding of how damage and injury develop in soft materials and tissues.

3.
ACS Appl Mater Interfaces ; 10(9): 8173-8179, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29436219

RESUMO

Metallic photonic crystals (MPCs) exhibit wavelength-selective thermal emission enhancements and are promising thermal optical devices for various applications. Here, we report a scalable fabrication strategy for MPCs suitable for high-temperature applications. Well-defined double-layer titanium dioxide (TiO2) woodpile structures are fabricated using a layer-by-layer soft-imprint method with TiO2 nanoparticle ink dispersions, and the structures are subsequently coated with high purity, conformal gold films via reactive deposition from supercritical carbon dioxide. The resulting gold-coated woodpile structures are effective MPCs and exhibit emissivity enhancements at a selective wavelength. Gold coatings deposited using a cold-wall reactor are found to be smoother and result in a greater thermal emission enhancement compared to those deposited using a hot-wall reactor.

4.
Nano Lett ; 18(2): 987-993, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29314859

RESUMO

Biological materials have the ability to withstand extreme mechanical forces due to their unique multilevel hierarchical structure. Here, we fabricated a nacre-mimetic nanocomposite comprised of silk fibroin and graphene oxide that exhibits hybridized dynamic responses arising from alternating high-contrast mechanical properties of the components at the nanoscale. Dynamic mechanical behavior of these nanocomposites is assessed through a microscale ballistic characterization using a 7.6 µm diameter silica sphere moving at a speed of approximately 400 m/s. The volume fraction of graphene oxide in these composites is systematically varied from 0 to 32 vol % to quantify the dynamic effects correlating with the structural morphologies of the graphene oxide flakes. Specific penetration energy of the films rapidly increases as the distribution of graphene oxide flakes evolves from noninteracting, isolated sheets to a partially overlapping continuous sheet. The specific penetration energy of the nanocomposite at the highest graphene oxide content tested here is found to be significantly higher than that of Kevlar fabrics and close to that of pure multilayer graphene. This study evidently demonstrates that the morphologies of nanoscale constituents and their interactions are critical to realize scalable high-performance nanocomposites using typical nanomaterial constituents having finite dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...