Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transplantation ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755748

RESUMO

In organ transplantation, accurate analysis of clinical outcomes requires large, high-quality data sets. Not only are outcomes influenced by a multitude of factors such as donor, recipient, and transplant characteristics and posttransplant events but they may also change over time. Although large data sets already exist and are continually expanding in transplant registries and health institutions, these data are rarely combined for analysis because of a lack of harmonization. Promoted by the digitalization of the healthcare sector, effective data harmonization tools became available, with potential applications also for organ transplantation. We discuss herein the present problems in the harmonization of organ transplant data and offer solutions to enhance its accuracy through the use of emerging new tools. To overcome the problem of inadequate representation of transplantation-specific terms, ontologies and common data models particular to this field could be created and supported by a consortium of related stakeholders to ensure their broad acceptance. Adopting clear data-sharing policies can diminish administrative barriers that impede collaboration between organizations. Secure multiparty computation frameworks and the artificial intelligence (AI) approach federated learning can facilitate decentralized and harmonized analysis of data sets, without sharing sensitive data and compromising patient privacy. A common image data model built upon a standardized format would be beneficial to AI-based analysis of pathology images. Implementation of these promising new tools and measures, ideally with the involvement and support of transplant societies, is expected to produce improved integration and harmonization of transplant data and greater accuracy in clinical decision-making, enabling improved patient outcomes.

2.
J Healthc Eng ; 2022: 3549238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35075386

RESUMO

Extensive research has been performed on continuous and noninvasive cuff-less blood pressure (BP) measurement using artificial intelligence algorithms. This approach involves extracting certain features from physiological signals, such as ECG, PPG, ICG, and BCG, as independent variables and extracting features from arterial blood pressure (ABP) signals as dependent variables and then using machine-learning algorithms to develop a blood pressure estimation model based on these data. The greatest challenge of this field is the insufficient accuracy of estimation models. This paper proposes a novel blood pressure estimation method with a clustering step for accuracy improvement. The proposed method involves extracting pulse transit time (PTT), PPG intensity ratio (PIR), and heart rate (HR) features from electrocardiogram (ECG) and photoplethysmogram (PPG) signals as the inputs of clustering and regression, extracting systolic blood pressure (SBP) and diastolic blood pressure (DBP) features from ABP signals as dependent variables, and finally developing regression models by applying gradient boosting regression (GBR), random forest regression (RFR), and multilayer perceptron regression (MLP) on each cluster. The method was implemented using the MIMIC-II data set with the silhouette criterion used to determine the optimal number of clusters. The results showed that because of the inconsistency, high dispersion, and multitrend behavior of the extracted features vectors, the accuracy can be significantly improved by running a clustering algorithm and then developing a regression model on each cluster and finally weighted averaging of the results based on the error of each cluster. When implemented with 5 clusters and GBR, this approach yielded an MAE of 2.56 for SBP estimates and 2.23 for DBP estimates, which were significantly better than the best results without clustering (DBP: 6.27, SBP: 6.36).


Assuntos
Determinação da Pressão Arterial , Fotopletismografia , Algoritmos , Inteligência Artificial , Pressão Sanguínea/fisiologia , Determinação da Pressão Arterial/métodos , Análise por Conglomerados , Humanos , Fotopletismografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...