Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(3): e0100122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638738

RESUMO

ß-Lactam antibiotics exploit the essentiality of the bacterial cell envelope by perturbing the peptidoglycan layer, typically resulting in rapid lysis and death. Many Gram-negative bacteria do not lyse but instead exhibit "tolerance," the ability to sustain viability in the presence of bactericidal antibiotics for extended periods. Antibiotic tolerance has been implicated in treatment failure and is a stepping-stone in the acquisition of true resistance, and the molecular factors that promote intrinsic tolerance are not well understood. Acinetobacter baumannii is a critical-threat nosocomial pathogen notorious for its ability to rapidly develop multidrug resistance. Carbapenem ß-lactam antibiotics (i.e., meropenem) are first-line prescriptions to treat A. baumannii infections, but treatment failure is increasingly prevalent. Meropenem tolerance in Gram-negative pathogens is characterized by morphologically distinct populations of spheroplasts, but the impact of spheroplast formation is not fully understood. Here, we show that susceptible A. baumannii clinical isolates demonstrate tolerance to high-level meropenem treatment, form spheroplasts upon exposure to the antibiotic, and revert to normal growth after antibiotic removal. Using transcriptomics and genetic screens, we show that several genes associated with outer membrane integrity maintenance and efflux promote tolerance, likely by limiting entry into the periplasm. Genes associated with peptidoglycan homeostasis in the periplasm and cytoplasm also answered our screen, and their disruption compromised cell envelope barrier function. Finally, we defined the enzymatic activity of the tolerance determinants penicillin-binding protein 7 (PBP7) and ElsL (a cytoplasmic ld-carboxypeptidase). These data show that outer membrane integrity and peptidoglycan recycling are tightly linked in their contribution to A. baumannii meropenem tolerance. IMPORTANCE Carbapenem treatment failure associated with "superbug" infections has rapidly increased in prevalence, highlighting the urgent need to develop new therapeutic strategies. Antibiotic tolerance can directly lead to treatment failure but has also been shown to promote the acquisition of true resistance within a population. While some studies have addressed mechanisms that promote tolerance, factors that underlie Gram-negative bacterial survival during carbapenem treatment are not well understood. Here, we characterized the role of peptidoglycan recycling in outer membrane integrity maintenance and meropenem tolerance in A. baumannii. These studies suggest that the pathogen limits antibiotic concentrations in the periplasm and highlight physiological processes that could be targeted to improve antimicrobial treatment.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Acinetobacter baumannii/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Peptidoglicano/metabolismo
2.
PLoS Pathog ; 18(2): e1010307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130322

RESUMO

Antibiotic tolerance is an understudied potential contributor to antibiotic treatment failure and the emergence of multidrug-resistant bacteria. The molecular mechanisms governing tolerance remain poorly understood. A prominent type of ß-lactam tolerance relies on the formation of cell wall-deficient spheroplasts, which maintain structural integrity via their outer membrane (OM), an asymmetric lipid bilayer consisting of phospholipids on the inner leaflet and a lipid-linked polysaccharide (lipopolysaccharide, LPS) enriched in the outer monolayer on the cell surface. How a membrane structure like LPS, with its reliance on mere electrostatic interactions to maintain stability, is capable of countering internal turgor pressure is unknown. Here, we have uncovered a novel role for the PhoPQ two-component system in tolerance to the ß-lactam antibiotic meropenem in Enterobacterales. We found that PhoPQ is induced by meropenem treatment and promotes an increase in 4-amino-4-deoxy-L-aminoarabinose [L-Ara4N] modification of lipid A, the membrane anchor of LPS. L-Ara4N modifications likely enhance structural integrity, and consequently tolerance to meropenem, in several Enterobacterales species. Importantly, mutational inactivation of the negative PhoPQ regulator mgrB (commonly selected for during clinical therapy with the last-resort antibiotic colistin, an antimicrobial peptide [AMP]) results in dramatically enhanced tolerance, suggesting that AMPs can collaterally select for meropenem tolerance via stable overactivation of PhoPQ. Lastly, we identify histidine kinase inhibitors (including an FDA-approved drug) that inhibit PhoPQ-dependent LPS modifications and consequently potentiate meropenem to enhance lysis of tolerant cells. In summary, our results suggest that PhoPQ-mediated LPS modifications play a significant role in stabilizing the OM, promoting survival when the primary integrity maintenance structure, the cell wall, is removed.


Assuntos
Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Tolerância a Medicamentos , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/metabolismo , Lipopolissacarídeos/metabolismo , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colistina/farmacologia , Enterobacter cloacae/genética , Regulação da Expressão Gênica , Histidina Quinase/antagonistas & inibidores , Humanos , Lipídeo A/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana
3.
J Bacteriol ; 204(2): e0043421, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898264

RESUMO

The stringent response is a broadly conserved stress response system that exhibits functional variability across bacterial clades. Here, we characterize the role of the stringent factor Rel in the nontuberculous mycobacterial pathogen, Mycobacterium abscessus (Mab). We found that deletion of rel does not ablate (p)ppGpp synthesis and that rel does not provide a survival advantage in several stress conditions or in antibiotic treatment. Transcriptional data show that RelMab is involved in regulating expression of anabolism and growth genes in the stationary phase. However, it does not activate transcription of stress response or antibiotic resistance genes and actually represses transcription of many antibiotic resistance genes. This work shows that there is an unannotated (p)ppGpp synthetase in Mab. IMPORTANCE In this study, we examined the functional roles of the stringent factor Rel in Mycobacterium abscessus (Mab). In most species, stringent factors synthesize the alarmone (p)ppGpp, which globally alters transcription to promote growth arrest and survival under stress and in antibiotic treatment. Our work shows that in Mab, an emerging pathogen that is resistant to many antibiotics, the stringent factor Rel is not solely responsible for synthesizing (p)ppGpp. We find that RelMab downregulates many metabolic genes under stress but does not upregulate stress response genes and does not promote antibiotic tolerance. This study implies that there is another critical but unannotated (p)ppGpp synthetase in Mab and suggests that RelMab inhibitors are unlikely to sensitize Mab infections to antibiotic treatment.


Assuntos
Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/metabolismo , Ligases/genética , Ligases/metabolismo , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Guanosina Pentafosfato/biossíntese , Mycobacterium abscessus/enzimologia
4.
mBio ; 12(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402533

RESUMO

Despite dogma suggesting that lipopolysaccharide/lipooligosaccharide (LOS) was essential for viability of Gram-negative bacteria, several Acinetobacter baumannii clinical isolates produced LOS- colonies after colistin selection. Inactivation of the conserved class A penicillin-binding protein, PBP1A, was a compensatory mutation that supported isolation of LOS-A. baumannii, but the impact of PBP1A mutation was not characterized. Here, we show that the absence of PBP1A causes septation defects and that these, together with ld-transpeptidase activity, support isolation of LOS-A. baumannii PBP1A contributes to proper cell division in A. baumannii, and its absence induced cell chaining. Only isolates producing three or more septa supported selection of colistin-resistant LOS-A. baumannii PBP1A was enriched at the midcell, where the divisome complex facilitates daughter cell formation, and its localization was dependent on glycosyltransferase activity. Transposon mutagenesis showed that genes encoding two putative ld-transpeptidases (LdtJ and LdtK) became essential in the PBP1A mutant. Both LdtJ and LdtK were required for selection of LOS-A. baumannii, but each had distinct enzymatic activities in the cell. Together, these findings demonstrate that defects in PBP1A glycosyltransferase activity and ld-transpeptidase activity remodel the cell envelope to support selection of colistin-resistant LOS-A. baumanniiIMPORTANCE The increasing prevalence of antibiotic treatment failure associated with Gram-negative bacterial infections highlights an urgent need to develop new alternative therapeutic strategies. The last-line antimicrobial colistin (polymyxin E) targets the ubiquitous outer membrane lipopolysaccharide (LPS)/LOS membrane anchor, lipid A, which is essential for viability of most diderms. However, several LOS-Acinetobacter baumannii clinical isolates were recovered after colistin selection, suggesting a conserved resistance mechanism. Here, we characterized a role for penicillin-binding protein 1A in A. baumannii septation and intrinsic ß-lactam susceptibility. We also showed that defects in PBP1A glycosyltransferase activity and ld-transpeptidase activity support isolation of colistin-resistant LOS-A. baumannii.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Lipopolissacarídeos/deficiência , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Lipídeo A/metabolismo , Lipopolissacarídeos/genética , Testes de Sensibilidade Microbiana , Peptidoglicano Glicosiltransferase
5.
J Vis Exp ; (161)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716393

RESUMO

Transposon sequencing (Tn-seq) is a powerful method that combines transposon mutagenesis and massive parallel sequencing to identify genes and pathways that contribute to bacterial fitness under a wide range of environmental conditions. Tn-seq applications are extensive and have not only enabled examination of genotype-phenotype relationships at an organism level but also at the population, community and systems levels. Gram-negative bacteria are highly associated with antimicrobial resistance phenotypes, which has increased incidents of antibiotic treatment failure. Antimicrobial resistance is defined as bacterial growth in the presence of otherwise lethal antibiotics. The "last-line" antimicrobial colistin is used to treat Gram-negative bacterial infections. However, several Gram-negative pathogens, including Acinetobacter baumannii can develop colistin resistance through a range of molecular mechanisms, some of which were characterized using Tn-seq. Furthermore, signal transduction pathways that regulate colistin resistance vary within Gram-negative bacteria. Here we propose an efficient method of transposon mutagenesis in A. baumannii that streamlines generation of a saturating transposon insertion library and amplicon library construction by eliminating the need for restriction enzymes, adapter ligation, and gel purification. The methods described herein will enable in-depth analysis of molecular determinants that contribute to A. baumannii fitness when challenged with colistin. The protocol is also applicable to other Gram-negative ESKAPE pathogens, which are primarily associated with drug resistant hospital-acquired infections.


Assuntos
Acinetobacter baumannii/genética , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutagênese
6.
J Antimicrob Chemother ; 75(10): 2843-2851, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591801

RESUMO

OBJECTIVES: Metallo-ß-lactamases (MBLs) are an emerging class of antimicrobial resistance enzymes that degrade ß-lactam antibiotics, including last-resort carbapenems. Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) are increasingly prevalent, but treatment options are limited. While several serine-dependent ß-lactamase inhibitors are formulated with commonly prescribed ß-lactams, no MBL inhibitors are currently approved for combinatorial therapies. New compounds that target MBLs to restore carbapenem activity against CPE are therefore urgently needed. Herein we identified and characterized novel synthetic peptide inhibitors that bound to and inhibited NDM-1, which is an emerging ß-lactam resistance mechanism in CPE. METHODS: We leveraged Surface Localized Antimicrobial displaY (SLAY) to identify and characterize peptides that inhibit NDM-1, which is a primary carbapenem resistance mechanism in CPE. Lead inhibitor sequences were chemically synthesized and MBCs and MICs were calculated in the presence/absence of carbapenems. Kinetic analysis with recombinant NDM-1 and select peptides tested direct binding and supported NDM-1 inhibitor mechanisms of action. Inhibitors were also tested for cytotoxicity. RESULTS: We identified approximately 1700 sequences that potentiated carbapenem-dependent killing against NDM-1 Escherichia coli. Several also enhanced meropenem-dependent killing of other CPE. Biochemical characterization of a subset indicated the peptides penetrated the bacterial periplasm and directly bound NDM-1 to inhibit enzymatic activity. Additionally, each demonstrated minimal haemolysis and cytotoxicity against mammalian cell lines. CONCLUSIONS: Our approach advances a molecular platform for antimicrobial discovery, which complements the growing need for alternative antimicrobials. We also discovered lead NDM-1 inhibitors, which serve as a starting point for further chemical optimization.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , beta-Lactamases , Animais , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/metabolismo , Enterobacteriaceae/metabolismo , Cinética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
7.
Mol Microbiol ; 111(6): 1604-1616, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30873646

RESUMO

The Enterobacter cloacae complex (ECC) consists of closely related bacteria commonly associated with the human microbiota. ECC are increasingly isolated from healthcare-associated infections, demonstrating that these Enterobacteriaceae are emerging nosocomial pathogens. ECC can rapidly acquire multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the highly conserved lipid A component of the Gram-negative outer membrane. Many Enterobacteriaceae fortify their outer membrane with cationic amine-containing moieties to prevent CAMP binding, which can lead to cell lysis. The PmrAB two-component system (TCS) directly activates 4-amino-4-deoxy-l-arabinose (l-Ara4N) biosynthesis to result in cationic amine moiety addition to lipid A in many Enterobacteriaceae such as E. coli and Salmonella. In contrast, PmrAB is dispensable for CAMP resistance in E. cloacae. Interestingly, some ECC clusters exhibit colistin heteroresistance, where a subpopulation of cells exhibit clinically significant resistance levels compared to the majority population. We demonstrate that E. cloacae lipid A is modified with l-Ara4N to induce CAMP heteroresistance and the regulatory mechanism is independent of the PmrABEcl TCS. Instead, PhoPEcl binds to the arnBEcl promoter to induce l-Ara4N biosynthesis and PmrAB-independent addition to the lipid A disaccharolipid. Therefore, PhoPQEcl contributes to regulation of CAMP heteroresistance in some ECC clusters.


Assuntos
Amino Açúcares/química , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Enterobacter cloacae/genética , Lipídeo A/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Farmacorresistência Bacteriana/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas
8.
mBio ; 9(1)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437928

RESUMO

Quaternary amine compounds (QAC) are potent antimicrobials used to prevent the spread of pathogenic bacteria. While they are known for their membrane-damaging properties, QAC action has been suggested to extend beyond the surface to intracellular targets. Here we characterize the range of action of the QAC biocide benzalkonium chloride (BZK) against the bacterial pathogen Acinetobacter baumannii At high concentrations, BZK acts through membrane disruption, but at low concentrations we show that wide-spread protein aggregation is associated with BZK-induced cell death. Resistance to BZK is found to develop through ribosomal protein mutations that protect A. baumannii against BZK-induced protein aggregation. The multifunctional impact of BZK led us to discover that alternative QAC structures, with low human toxicity, retain potent action against multidrug-resistant A. baumannii, Staphylococcus aureus, and Clostridium difficile and present opportunities for their development as antibiotics.IMPORTANCE Quaternary amine compounds (QACs) are widely used to prevent the spread of bacterial pathogens, but our understanding of their mode of action is incomplete. Here we describe disruption of bacterial proteostasis as an unrecognized action of QAC antimicrobial action and uncover the potential of diverse QAC structures to act as multitarget antibiotics.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Compostos de Benzalcônio/farmacologia , Agregados Proteicos , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
9.
PLoS Pathog ; 12(4): e1005570, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27070545

RESUMO

The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR's genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae's major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Fatores de Transcrição/genética , Vibrio cholerae/patogenicidade , Virulência/genética , Animais , Sequência de Bases , Northern Blotting , Cólera/genética , Imunoprecipitação da Cromatina , Transferência Genética Horizontal , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...