Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biomicrofluidics ; 16(6): 064106, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36536792

RESUMO

Paper has attracted significant attention recently as a microfluidic component and platform, especially in passive pumping devices due to its porous and uniform absorbing nature. Many investigations on 1D and 2D fluid flows were carried out. However, no experimental work has been reported on the three-dimensional effect in porous geometry to improve pumping characteristics in microchannels. Therefore, in this study, the fluid flow in 3D paper-based passive pumps was investigated in microchannels using cylindrical pumps. The effect of pump diameter, porosity, and programmability was investigated to achieve desired flow variations. The results indicated that the flow rate of water increased with an increase in the diameter and porosity of paper pumps. Maximum flow rates achieved for 14 mm diameter pumps of 0.5 and 0.7 porosities were 5.29 mm3/s (317.4 µl/min) and 6.97 mm3/s (418.2 µl/min), respectively. The total volume of fluid imbibition ranged between 266 and 567 µl for 8 and 14 mm diameter pumps, respectively. Moreover, 3D passive pumps can transport larger volumes of liquid with an improved flow rate, programmability, and control, in addition to being inexpensive and simple to design and fabricate. Most importantly, a single 3D paper pump showed an increasing, decreasing, and constant flow rate all in a single microchannel. With these benefits, the passive pumps can further improve the pumping characteristics of microfluidic platforms enabling a cost effective and programmable point-of-care diagnostic device.

2.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232779

RESUMO

Crop growth and development are frequently affected by biotic and abiotic stresses. The adaptation of crops to stress is mostly achieved by regulating specific genes. The root system is the primary organ for nutrient and water uptake, and has an important role in drought stress response. The improvement of stress tolerance to increase crop yield potential and yield stability is a traditional goal of breeders in cultivar development using integrated breeding methods. An improved understanding of genes that control root development will enable the formulation of strategies to incorporate stress-tolerant genes into breeding for complex agronomic traits and provide opportunities for developing stress-tolerant germplasm. We screened the genes associated with root growth and development from diverse plants including Arabidopsis, rice, maize, pepper and tomato. This paper provides a theoretical basis for the application of root-related genes in molecular breeding to achieve crop drought tolerance by the improvement of root architecture.


Assuntos
Arabidopsis , Secas , Produtos Agrícolas/genética , Melhoramento Vegetal , Estresse Fisiológico/genética , Água
3.
Plants (Basel) ; 11(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956505

RESUMO

The selection and breeding of deep rooting and drought-tolerant varieties has become a promising approach for improving the yield and adaptability of potato (Solanum tuberosum L.) in arid and semiarid areas. Therefore, the discovery of root-development-related genes and drought tolerance signaling pathways in potato is important. In this study, we used deep-rooting (C119) and shallow-rooting (C16) potato genotypes, with different levels of drought tolerance, to achieve this objective. Both genotypes were treated with 150 mM mannitol for 0 h (T0), 2 h (T2), 6 h (T6), 12 h (T12), and 24 h (T24), and their root tissues were subjected to comparative transcriptome analysis. A total of 531, 1571, 1247, and 3540 differentially expressed genes (DEGs) in C16 and 1531, 1108, 674, and 4850 DEGs in C119 were identified in T2 vs. T0, T6 vs. T2, T12 vs. T6, and T24 vs. T12 comparisons, respectively. Gene expression analysis indicated that a delay in the onset of drought-induced transcriptional changes in C16 compared with C119. Functional enrichment analysis revealed genotype-specific biological processes involved in drought stress tolerance. The metabolic pathways of plant hormone transduction and MAPK signaling were heavily involved in the resistance of C16 and C119 to drought, while abscisic acid (ABA), ethylene, and salicylic acid signal transduction pathways likely played more important roles in C119 stress responses. Furthermore, genes involved in root cell elongation and division showed differential expression between the two genotypes under drought stress. Overall, this study provides important information for the marker-assisted selection and breeding of drought-tolerant potato genotypes.

4.
Sci Prog ; 104(2): 368504211020930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048318

RESUMO

Despite a number of efforts to evaluate the utility of water-diesel emulsions (WED) in CI engine to improve its performance and reduce its emissions in search of alternative fuels to combat the higher prices and depleting resources of fossil fuels, no consistent results are available. Additionally, the noise emissions in the case of WED are not thoroughly discussed which motivated this research to analyze the performance and emission characteristics of WED. Brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) were calculated at 1600 rpm within 15%-75% of the load range. Similarly, the contents of NOx, CO, and HC, and level of noise and smoke were measured varying the percentage of water from 2% to 10% gradually for all values of loads. BTE in the case of water emulsified diesel was decreased gradually as the percentage of water increased accompanied by a gradual increase in BSFC. Thus, WED10 showed a maximum 13.08% lower value of BTE while BSFC was increased by 32.28%. However, NOx emissions (21.8%) and smoke (48%) were also reduced significantly in the case of WED10 along with an increase in the emissions of HC and CO and noise. The comparative analysis showed that the emulsified diesel can significantly reduce the emission of NOx and smoke, but it has a negative impact on the performance characteristics and HC, CO, and noise emissions which can be mitigated by trying more fuels variations such as biodiesel and using different water injection methods to decrease dependency on fossil fuels and improve the environmental impacts of CI engines.

5.
Materials (Basel) ; 13(13)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635514

RESUMO

The electrohydrodynamic deformation of an emulsion droplet with a clean and particle-covered interface was explored. Here, the electrohydrodynamic deformation was numerically and experimentally demonstrated under the stimuli of moderate and strong electric fields. The numerical method involves the coupling of the Navier-Stokes equation with the level set equation of interface tracking and the governing equations of so-called leaky dielectric theory. The simulation model developed for a clean interface droplet was then extended to a capsule model for densely particle-covered droplets. The experiments were conducted using various combinations of immiscible oils and particle suspensions while the electric field strength ~105 V/m was generated using a high voltage supply. The experimental images obtained by the camera were post-processed using an in-house image processing code developed on the plat-form of MATLAB software. The results show that particle-free droplets can undergo prolate (deformation in the applied electric field direction) or oblate deformation (deformation that is perpendicular to the direction of the applied electric field) of the droplet interface, whereas the low-conductivity particles can be manipulated at the emulsion interface to form a 'belt', 'helmet' or 'cup' morphologies. A densely particle-covered droplet may not restore to its initial spherical shape due to 'particle jamming' at the interface, resulting in the formation of unique droplet shapes. Densely particle-covered droplets behave like droplets covered with a thin particle sheet, a capsule. The deformation of such droplets is explored using a simulation model under a range of electric capillary numbers (i.e., the ratio of the electric stresses to the capillary stresses acting at the droplet interface). The results obtained are then compared with the theory and experimental findings. It was shown that the proposed simulation model can serve as a tool to predict the deformation/distortion of both the particle-free and the densely particle-covered droplets within the small deformation limit. We believe that this study could provide new findings for the fabrication of complex-shaped species and colloidosomes.

7.
Sci Prog ; 103(2): 36850420921685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478642

RESUMO

Compression ignition engines are one of the world's largest consumers of fossil oil but have energy extraction efficiency limited to 35%. Addition of hydrogen alongside diesel fuel has been found to improve engine performance and efficiency; however, after a certain limit, hydrogen begins to show adverse effects, mainly because the ratio of oxygen to fuel decreases. This can be overcome by using oxyhydrogen, which is a mixture of hydrogen and oxygen gas. In this study, effects of addition of oxyhydrogen generated by electrolysis, with varying flows at the intake manifold, on a 315 cc compression ignition engine alongside diesel were analyzed. The engine was mounted on a Thepra test bed and torque measurements were taken at predetermined test points for diesel and 6 and 10 standard cubic feet per hour flowrates of oxyhydrogen. H10 showed the maximum improvement in engine performance equating to a 22.4% increase in both torque and power at 3000 r/min, and a 19.4% increase in efficiency at 2600 r/min was recorded. The large increase in engine performance as compared to previous results is because of high oxyhydrogen flowrate to displacement volume ratio. The oxyhydrogen flowrate to displacement ratio is the most important factor as it is directly impacts engine performance. The difference in engine performance because of oxyhydrogen becomes prominent at higher engine speed due to high suction pressure. No experimental flowrates of oxyhydrogen showed any adverse effect on the engine performance.

8.
Adv Mater ; 29(12)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28121372

RESUMO

Continuously operating thermo-electrochemical cells (thermocells) are of interest for harvesting low-grade waste thermal energy because of their potentially low cost compared with conventional thermoelectrics. Pt-free thermocells devised here provide an output power of 12 W m-2 for an interelectrode temperature difference (ΔT) of 81 °C, which is sixfold higher power than previously reported for planar thermocells operating at ambient pressure.

12.
Psychiatr Serv ; 53(5): 620-1, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11986514

RESUMO

The authors sought to establish the financial cost of involuntary court-ordered evaluations and potential strategies for reducing these costs. Medical charges from the time of admission to the time of the court hearing were calculated for 998 patients who received involuntary court-ordered evaluations at the department of psychiatry of the Maricopa Medical Center in Phoenix, Arizona, in 1999. The average cost of an involuntary court-ordered evaluation was 8,236 dollars, and the average cost per day was 686 dollars. The analysis showed that several options could be used to reduce costs: expediting evaluations, holding court hearings on weekends and holidays, conducting evaluations on an outpatient basis, and housing patients in a less acute setting.


Assuntos
Internação Compulsória de Doente Mental/economia , Internação Compulsória de Doente Mental/legislação & jurisprudência , Serviços de Diagnóstico/economia , Transtornos Mentais/diagnóstico , Transtornos Mentais/economia , Adulto , Arizona , Feminino , Custos Hospitalares , Humanos , Masculino , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA