Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 935973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966785

RESUMO

Introduction: The typical symptoms of Alzheimer's disease (AD) are cognitive impairment, disrupted spatial orientation, behavioral and psychiatric abnormalities, and later motor deficits. Neuropathologically, AD is characterized by deposits of pathological forms of endogenous proteins - amyloid-ß, and neurofibrillary tau protein pathology. The latter closely correlates with brain atrophy and clinical impairment. Pharmacological therapies for these pathologies are largely absent, raising the question whether non-pharmacological interventions could be efficacious. Environmental factors can play a role in the manifestation of AD. It is unknown whether enriched environment (EE) can ameliorate the propagation of protein aggregates or their toxic components. Methods: We injected insoluble tau extracts from human brains with AD (600 or 900 ng per animal) into hippocampi of SHR72 transgenic rats that express non-mutated truncated human tau 151-391/4R, but usually do not develop hippocampal tangles. The rats had either standard housing, or could access an EE 5×/week for 3 months. Behavioral analysis included the Morris Water Maze (MWM). Histological analysis was used to assess the propagation of tau pathology. Results: Animals exposed to EE performed better in the MWM (spatial acquisition duration and total distance, probe test); unexposed animals improved over the course of acquisition trials, but their mean performance remained below that of the EE group. Enriched environment abrogated tau propagation and hippocampal tangle formation in the 600 ng group; in the 900 ng group, tangle formation was ∼10-fold of the 600 ng group, and unaffected by EE. Conclusion: Even a small difference in the amount of injected human AD tau can cause a pronounced difference in the number of resulting tangles. EE leads to a noticeably better spatial navigation performance of tau-injected animals. Furthermore, EE seems to be able to slow down tau pathology progression, indicating the possible utility of similar interventions in early stages of AD where tangle loads are still low.

2.
Lancet Neurol ; 16(2): 123-134, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27955995

RESUMO

BACKGROUND: Neurofibrillary pathology composed of tau protein is a main correlate of cognitive impairment in patients with Alzheimer's disease. Immunotherapy targeting pathological tau proteins is therefore a promising strategy for disease-modifying treatment of Alzheimer's disease. We have developed an active vaccine, AADvac1, against pathological tau proteins and assessed it in a phase 1 trial. METHODS: We did a first-in-man, phase 1, 12 week, randomised, double-blind, placebo-controlled study of AADvac1 with a 12 week open-label extension in patients aged 50-85 years with mild-to-moderate Alzheimer's disease at four centres in Austria. We randomly assigned patients with a computer-generated sequence in a 4:1 ratio overall to receive AADvac1 or placebo. They received three subcutaneous doses of AADvac1 or placebo from masked vaccine kits at monthly intervals, and then entered the open-label phase, in which all patients were allocated to AADvac1 treatment and received another three doses at monthly intervals. Patients, carers, and all involved with the trial were masked to treatment allocation. The primary endpoint was all-cause treatment-emergent adverse events, with separate analyses for injection site reactions and other adverse events. We include all patients who received at least one dose of AADvac1 in the safety assessment. Patients who had a positive IgG titre against the tau peptide component of AADvac1 at least once during the study were classified as responders. The first-in-man study is registered with EU Clinical Trials Register, number EudraCT 2012-003916-29, and ClinicalTrials.gov, number NCT01850238; the follow-up study, which is ongoing, is registered with EU Clinical Trials Register, number EudraCT 2013-004499-36, and ClinicalTrials.gov, number NCT02031198. FINDINGS: This study was done between June 9, 2013, and March 26, 2015. 30 patients were randomly assigned in the double-blind phase: 24 patients to the AADvac1 group and six to the placebo group. A total of 30 patients received AADvac1. Two patients withdrew because of serious adverse events. The most common adverse events were injection site reactions after administration (reported in 16 [53%] vaccinated patients [92 individual events]). No cases of meningoencephalitis or vasogenic oedema occurred after administration. One patient with pre-existing microhaemorrhages had newly occurring microhaemorrhages. Of 30 patients given AADvac1, 29 developed an IgG immune response. A geometric mean IgG antibody titre of 1:31415 was achieved. Baseline values of CD3+ CD4+ lymphocytes correlated with achieved antibody titres. INTERPRETATION: AADvac1 had a favourable safety profile and excellent immunogenicity in this first-in-man study. Further trials are needed to corroborate the safety assessment and to establish proof of clinical efficacy of AADvac1. FUNDING: AXON Neuroscience SE.


Assuntos
Doença de Alzheimer/terapia , Vacinas contra Alzheimer/farmacologia , Imunoterapia/métodos , Avaliação de Resultados em Cuidados de Saúde , Proteínas tau/imunologia , Idoso , Idoso de 80 Anos ou mais , Vacinas contra Alzheimer/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Imunoterapia/efeitos adversos , Masculino , Pessoa de Meia-Idade
3.
Front Cell Neurosci ; 9: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25755633

RESUMO

Synaptic failure and neurofibrillary degeneration are two major neuropathological substrates of cognitive dysfunction in Alzheimer's disease (AD). Only a few studies have demonstrated a direct relationship between these two AD hallmarks. To investigate tau mediated synaptic injury we used rat model of tauopathy that develops extensive neurofibrillary pathology in the cortex. Using fractionation of cortical synapses, we identified an increase in endogenous rat tau isoforms in presynaptic compartment, and their mis-sorting to the postsynaptic density (PSD). Truncated transgenic tau was distributed in both compartments exhibiting specific phospho-pattern that was characteristic for each synaptic compartment. In the presynaptic compartment, truncated tau was associated with impairment of dynamic stability of microtubules which could be responsible for reduction of synaptic vesicles. In the PSD, truncated tau lowered the levels of neurofilaments. Truncated tau also significantly decreased the synaptic levels of Aß40 but not Aß42. These data show that truncated tau differentially deregulates synaptic proteome in pre- and postsynaptic compartments. Importantly, we show that alteration of Aß can arise downstream of truncated tau pathology.

4.
J Neuroinflammation ; 11: 161, 2014 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-25217135

RESUMO

BACKGROUND: Abnormal misfolded tau protein is a driving force of neurofibrillary degeneration in Alzheimer's disease. It has been shown that tau oligomers play a crucial role in the formation of intracellular neurofibrillary tangles. They are intermediates between soluble tau monomers and insoluble tau filaments and are suspected contributors to disease pathogenesis. Oligomeric tau can be released into the extracellular space and spread throughout the brain. This finding opens the question of whether brain macrophages or blood monocytes have the potential to phagocytose extracellular oligomeric tau. METHODS: We have used stable rat primary microglial cells, rat peripheral monocytes-derived macrophages, BV2 microglial and TIB67 macrophage immortalized cell lines that were challenged by tau oligomers prepared by an in vitro aggregation reaction. The efficiency of cells to phagocytose oligomeric protein was evaluated with confocal microscopy. The ability to degrade tau protein was analyzed by immunoblotting. RESULTS: Confocal microscopy analyses showed that macrophages were significantly more efficient in phagocytosing oligomerized tau proteins than microglial cells. In contrast to macrophages, microglia are able to degrade the internalized oligomeric tau only after stimulation with lipopolysaccharide (LPS). CONCLUSIONS: Our data suggests that microglia may not be the principal phagocytic cells able to target extracellular oligomeric tau. We found that peripheral macrophages display a high potency for elimination of oligomeric tau and therefore could play an important role in the modulation of neurofibrillary pathology in Alzheimer's disease.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Fagocitose/fisiologia , Proteínas tau/metabolismo , Animais , Western Blotting , Células Cultivadas , Espaço Extracelular/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Multimerização Proteica , Ratos , Ratos Sprague-Dawley
5.
J Alzheimers Dis ; 37(2): 251-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23985419

RESUMO

Human neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease represent unmet medical need. There is no effective cure available on the market. Several novel therapeutic approaches targeting fundamental features of these disorders have been proposed during the last two decades. Cell therapy represents one of the most promising therapeutic avenues targeting different pathological traits of these disorders. However, there are some caveats that should be taken into the consideration including ethical issues and limited utilization for routine clinical practice. It is unlikely that cell therapy constitutes the 'magic bullet' therapeutic approach that would meet all therapeutic needs. However, in the future it can potentially bolster the effect of disease modifying drugs by improving the brain environment and regulation of inflammatory and neurotrophic pathways.


Assuntos
Doença de Alzheimer/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doença de Parkinson/terapia , Células-Tronco/fisiologia , Humanos
6.
J Neuroinflammation ; 9: 47, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22397366

RESUMO

Neurodegeneration, induced by misfolded tau protein, and neuroinflammation, driven by glial cells, represent the salient features of Alzheimer's disease (AD) and related human tauopathies. While tau neurodegeneration significantly correlates with disease progression, brain inflammation seems to be an important factor in regulating the resistance or susceptibility to AD neurodegeneration. Previously, it has been shown that there is a reciprocal relationship between the local inflammatory response and neurofibrillary lesions. Numerous independent studies have reported that inflammatory responses may contribute to the development of tau pathology and thus accelerate the course of disease. It has been shown that various cytokines can significantly affect the functional and structural properties of intracellular tau. Notwithstanding, anti-inflammatory approaches have not unequivocally demonstrated that inhibition of the brain immune response can lead to reduction of neurofibrillary lesions. On the other hand, our recent data show that misfolded tau could represent a trigger for microglial activation, suggesting the dual role of misfolded tau in the Alzheimer's disease inflammatory cascade. On the basis of current knowledge, we can conclude that misfolded tau is located at the crossroad of the neurodegenerative and neuroinflammatory pathways. Thus disease-modified tau represents an important target for potential therapeutic strategies for patients with Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encefalite/etiologia , Doenças Neurodegenerativas/etiologia , Deficiências na Proteostase/complicações , Proteínas tau/metabolismo , Animais , Encefalite/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Dobramento de Proteína
7.
Neurodegener Dis ; 10(1-4): 242-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22433908

RESUMO

BACKGROUND: Neurodegeneration induced by misfolded tau protein and neuroinflammation represent the major hallmarks of human tauopathies including Alzheimer's disease (AD). While tau driven neurodegeneration significantly correlates with disease progression, inflammation is considered to be an important factor regulating the resistance or susceptibility to AD. The emerging evidence suggests that the genes related to immunity can influence neurodegeneration. OBJECTIVE: In order to determine the role of MHC class II in the tau neurofibrillary cascade, we generated and used transgenic lines expressing human truncated tau protein in either spontaneously hypertensive rat (SHR) or Wistar-Kyoto rat (WKY) genetic background. METHODS: Brains of WKY and SHR transgenic rats and their age-matched nontransgenic littermates were examined by immunohistochemistry and RT-PCR. RESULTS: Our results clearly showed that genetic background determined the inflammatory pattern (MHC class II) induced by tau neurodegenerative cascade in the transgenic rats expressing human misfolded truncated tau. CONCLUSION: Using two transgenic rat lines with different immunogenetic backgrounds, expressing the same transgene, we conclude that genetic background is a potent modifier of the type of the immune response induced by tau neurodegeneration.


Assuntos
Doença de Alzheimer/complicações , Antígenos de Histocompatibilidade Classe II/metabolismo , Transtornos da Memória/etiologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Transtornos da Memória/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Transgênicos
8.
J Immunol ; 187(5): 2732-9, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21813771

RESUMO

Neuroinflammation plays a key role in the pathogenesis of Alzheimer's disease and related tauopathies. We have previously shown that expression of nonmutated human truncated τ (151-391, 4R), derived from sporadic Alzheimer's disease, induced neurofibrillary degeneration accompanied by microglial and astroglial activation in the brain of transgenic rats. The aim of the current study was to determine the molecular mechanism underlying innate immune response induced by misfolded truncated τ. We found that purified recombinant truncated τ induced morphological transformation of microglia from resting into the reactive phenotype. Simultaneously, truncated τ caused the release of NO, proinflammatory cytokines (IL-1ß, IL-6, TNF-α), and tissue inhibitor of metalloproteinase-1 from the mixed glial cultures. Notably, when the pure microglial culture was activated with truncated τ, it displayed significantly higher levels of the proinflammatory cytokines, suggesting a key role of microglia in the τ-mediated inflammatory response. Molecular analysis showed that truncated τ increased the mRNA levels of three MAPKs (JNK, ERK1, p38ß) and transcription factors AP-1 and NF-κB that ultimately resulted in enhanced mRNA expression of IL-1ß, IL-6, TNF-α, and NO. Our results showed for the first time, to our knowledge, that misfolded truncated protein τ is able to induce innate immune response via a MAPK pathway. Consequently, we suggest that misfolded truncated protein τ represents a viable target for immunotherapy of Alzheimer's disease.


Assuntos
Imunidade Inata , Microglia/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Proteínas tau/imunologia , Animais , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Ratos , Proteínas Recombinantes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...