Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 96: 85-92, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32819702

RESUMO

This study focused on metal release from technosols induced by synthetic root exudate (SRE). The effect of SRE composition on metal release was studied using six technosols. This was done by treating the technosols with SRE solutions having varying concentrations of low molecular weight organic acids (LMWOAs), namely oxalic, citric, and malic acids. Consequently, the physico-chemical parameters (pH and electric conductivity), Ca, Mg, Fe, Zn, and Cu release (by atomic absorption spectroscopy, AAS), chemical changes (by Fourier transform infrared, FT-IR), and organic parameters (by fluorescence) were investigated. Metal release showed to be dependent on the SRE composition and technosol characteristics. Citric acid selectively released Ca, Mg, Zn, and Cu from technosols in a concentration-dependent manner; oxalic acid showed a significant role in the release of Mg and Fe. Under relatively high LMWOA concentrations, particulate organo-mineral complexes precipitated. Additionally, technosol weathering was seen by the dissolution of humic substances and ferriallophanes, which in turn caused metal release. However, re-precipitation of these phases showed to re-sorb metals, thus underestimating the role of LMWOAs in metal release. Therefore, the selective metal leaching was highly dependent on the SRE composition and LMWOA concentrations on one hand, and on the mineral, organic, and organo-mineral components of the technosols on the other. The understanding of such processes is crucial for proposing and implementing environmental management strategies to reduce metal leaching or for the beneficial re-usage of metals (e.g., for agromining) from technosols.


Assuntos
Poluentes do Solo/análise , Ácido Cítrico , Metais , Ácido Oxálico , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Chemosphere ; 199: 427-434, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29453069

RESUMO

The aim of this study is to determine the combined effect of copper and hydrodynamic conditions on the response of certain biomarkers of an aquatic macrophyte, namely Myriophyllum alterniflorum. Watermilfoil biomarkers are monitored in a synthetic medium enriched or not with copper (100 µg.L-1) for 21 days in aquarium systems (150 L), under three hydrodynamic conditions: laminar, turbulent, and calm. The studied biomarkers are: respiratory and photosynthetic activities; concentrations of chlorophyll a, b and carotenoids; osmotic potential; hydrogen peroxide content; and growth. In addition, Cu contents in water and in Myriophyllum alterniflorum (roots and shoots) are investigated. The hydrodynamic conditions only affect watermilfoil morphology. Copper accumulates less in turbulent zones; moreover, it is more likely to accumulate in shoots than in roots, except within the calm zone. Cu leads to: i) a significant increase in H2O2 content, ii) a decrease in root growth, pigment content, osmotic potential, photosynthesis and respiration rates, and iii) an inhibition of shoot branching. Differential effects are also observed between younger and older parts, thus indicating the benefit of considering these two plant parts separately in water quality biomonitoring.


Assuntos
Biomarcadores/análise , Cobre/farmacologia , Monitoramento Ambiental/métodos , Hidrodinâmica , Qualidade da Água , Respiração Celular/efeitos dos fármacos , Clorofila/análise , Clorofila A , Peróxido de Hidrogênio/análise , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos
3.
Sci Total Environ ; 599-600: 540-553, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28494280

RESUMO

Submerged sediment cores were collected upstream of a dam in the Orne River, northeastern France. This dam was built in the context of steelmaking to constitute a water reservoir for blast furnace cooling and wet cleaning of furnace smokes. The dam also enhanced sediment deposition in the upstream zone. This study was performed to unravel the contamination status of sediments and to evidence possible contribution sources. The sediment layers were analyzed for water content, grain size, chemical composition, crystalline phases at a bulk scale and poorly crystalline and amorphous phases at a sub-micrometer scale. Visual aspect, texture, color, and chemical and mineralogical analyses showed that the settled sediments were mainly composed of fine black matter, certainly comprising steelmaking by-products. Those materials were highly enriched with Fe, Zn, Pb and other trace metals, except for a relatively thin layer of surficial sediments that had settled more recently. Bulk mineralogy revealed crystalline iron minerals, such as magnetite, goethite, wuestite and pyrite, in the deep layers of the sediment cores. Furthermore, microscopic investigations evidenced the presence of ferrospheres, goethite nanoparticles and newly formed Fe-aluminosilicates; all originating from the former steelmaking facilities. The variation of iron mineralogy, combined with specific chemical profiles and other sediment features, demonstrate the different contributions that constitute the sediment deposit. Furthermore, chemical and mineralogical features of goethite and Fe-aluminosilicates could be used as a fingerprint for such contaminated sediments.

4.
J Environ Manage ; 197: 571-581, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28431370

RESUMO

Water scarcity and increasing water demand require the development of water management plans such as establishing artificial lakes and dams. Plans to meet water needs are faced by uprising challenges to improve water quality and to ensure the sustainability of hydro-projects. Environmental isotopes coupled to water physicochemical characteristics were investigated over a biennial cycle to assess both geomorphological and environmental impacts on the water quality of a reservoir situated in an intensively used agricultural watershed under a Mediterranean semi-arid climate. The particularity of the semi-arid climate and the diverse topography generate a continental and orographic rain effect on the isotopic composition of precipitation and the water recharged sources. The studied reservoir responds quickly to land-use activities and climatic changes as reflected by temporal and spatial variations of water chemistry and isotopic composition. Increasing changes in precipitation rate and dry periods significantly modified the water isotopic composition in the reservoir. During the first year, hydrogen (δD) and oxygen (δ18O) isotopes are depleted by 6 and 2‰ between dry and wet season, respectively. While a shift of -2‰ for δD and -1‰ for δ18O was detected during the second annual cycle. Environmental isotopic compositions demonstrate for the first time the occurrence of groundwater inflow to the central (Cz) and dam (Dz) zones of the Qaraaoun reservoir. The Cz and Dz can be considered as open water bodies subjected to dilution by groundwater inflow, which induces vertical mixing and reverse isotopic stratification of the water column. In the contrary, the river mouth zone acts as a closed system without groundwater intrusion, where heavy water accumulates and may act as a sink for contaminants during dry season. Groundwater influx acts as a dilution factor that renews the hypolimnion, and minimizes the perturbations induced by both internal biogeochemical reactions and external hydrological variations. Attention should be devoted to the hydrogeological location of planned reservoirs, which should take into account the vicinity of shallow water table to insure good water quality and water sustainability.


Assuntos
Água Subterrânea , Hidrodinâmica , Monitoramento Ambiental , Hidrologia , Rios
5.
Environ Pollut ; 220(Pt B): 779-787, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27816295

RESUMO

The contamination of edible leafy vegetables by atmospheric heavy metal-bearing particles is a major issue in environmental toxicology. In this study, the uptake of lead by cladodes of Opuntia ficus-indica (Ofi), traditionally used in Mexican cuisine and in livestock fodder, is investigated after a 4-months exposure of either cladodes or roots to synthetic Pb-fluorapatite particles. Atomic Absorption Spectroscopy (AAS) for the quantitative analysis of Pb levels, Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) for the examination of the cladode surface and fate of particles, and Micro-X-ray fluorescence (µXRF) measurements for elemental mapping of Pb in cladodes, were used. The results evidence that foliar contamination may be a major pathway for the transfer of Pb within Ofi cladodes. The stomata, areoles, and cuticle of cladode surface, play an obvious role in the retention and the incorporation of lead-bearing apatite, thus revealing the hazard of eating contaminated cladodes. The possibility of using series of successive cladodes for biomonitoring the atmospheric pollution in arid and semi-arid regions is also rapidly discussed.


Assuntos
Apatitas/toxicidade , Chumbo/análise , Opuntia/química , Extratos Vegetais/análise , Folhas de Planta/química , Raízes de Plantas/química , Poluentes do Solo/análise , Monitoramento Ambiental , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Espectrofotometria Atômica
6.
J Environ Manage ; 178: 20-29, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27131954

RESUMO

Column leaching tests were conducted to investigate the effects of soil physicochemical characteristics on metal mobility in the subsurface. The metals investigated originated from disposed industrial waste byproducts and from agrochemicals spread over the farmlands. Soil column tests can provide insights into leaching of metals to underlying water compartments. The findings of this study can be used for prevention strategies and for setting risk assessment approaches to land-use and management, and soil and water quality and sustainability. Soils collected from an industrial (IS) watershed and an agricultural (AQ) hydrographic basin were used in soil column leaching experiments. The soil samples were characterized for mineralogy, functional groups, grain size, surface charge, soil type, porosity, and cation exchange capacity (CEC) along with elemental composition. Varying concentrations of phosphogypsum industrial waste or agrochemical (NPK fertilizer) was then added to the surface of the packed columns (n = 28). The columns were subjected to artificial rain over a period of 65 days. Leachates were collected and analyzed for dissolved Na(+), K(+), and Cd(2+) throughout the experimental period, whereas residual Cd content in the subsurface soil was measured at the end of the experiment. Physicochemical characterization indicated that the AQ soil has a higher potential for metal retention due to its fine clay texture, calcareous pH, high organic matter content and CEC. Metal release was more prominent in the IS soil indicating potential contamination of the surrounding soil and water compartments. The higher metal release is attributed to soil physicochemical characteristics. High calcium concentrations of phosphogypsum origin is expected to compete for adsorbed bivalent elements, such as Cd, resulting in their release. The physicochemical characteristics of the receiving media should be taken into consideration when planning land-use in order to achieve sustainable development. Soil physiochemical characteristics play a key role in determining the behavior and fate of elements upon application of amendments. Sandy soils should not be assigned to industrial zones or landfills due to their high permeability, unlike fine clay soils. Furthermore, application of fertilizers on sandy soils can threaten groundwater quality, whereas their extensive use on clayey soil can cause soil salinisation.


Assuntos
Sulfato de Cálcio/química , Fertilizantes/análise , Metais Pesados/química , Fósforo/química , Solo/química , Adsorção , Humanos , Resíduos Industriais , Líbano , Poluentes do Solo/química , Gerenciamento de Resíduos
7.
Water Res ; 99: 56-65, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27135373

RESUMO

This research reports on phosphate removal from aqueous solution using ZVI/sand packed columns. The influence of column preconditioning, consisting of ZVI pre-oxidation before feeding the columns with phosphate solution, revealed that a column aged for 1 day was more efficient than un-conditioned column, 5-days and 10-days preconditioned columns. The distribution of phosphate trapped inside the columns was evaluated by measuring phosphate concentration in the solids at different levels (P1, P2 and P3) along the depth of the columns. The distribution of phosphate inside the columns was determined for a time period up to 46 days, corresponding to column saturation. Results showed heterogeneous trapping along the column before saturation and homogeneous distribution upon saturation. The maximum cumulative trapped phosphate after column dismantling was determined before saturation (after 17 days running) at 130, 68 and 31 mgP/gFe at the inlet-P1, P1-P2 and P2-P3 layers, respectively, whereas the homogeneous distribution of phosphate upon saturation was determined at 132 mgP/gFe throughout the column. Solid supports were characterized using SEM, XRD and XPS. Lepidocrocite and maghemite/magnetite were the only iron oxidation products identified at the different layers inside the columns. XPS results confirmed the sorption of phosphate at the surface of ZVI and its oxidation products and highlighted the formation of an iron phosphate complex.


Assuntos
Ferro , Poluentes Químicos da Água , Oxirredução , Fosfatos , Dióxido de Silício
8.
Environ Sci Pollut Res Int ; 23(11): 11129-11136, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26916264

RESUMO

The aim of this study is to evaluate copper and arsenic accumulation and translocation at a concentration of 100 µg/L of a submersed macrophyte Myriophyllum alterniflorum. The trophic level (eutrophic and oligotrophic conditions) of the medium was also considered. To achieve this goal, plants were incubated for 21 days in the presence of 100 µg/L of Cu or AsV. The heavy metal transfers from the contaminated medium to plants and into plant tissues was discussed in terms of the bioconcentration factor (BCF) and the translocation factor (TF). Malondialdehyde (MDA) content in tissues was analyzed in order to study the toxicity of these two contaminants. Our results show that copper was more accumulated in shoots, than roots, whereas the opposite trend was observed for arsenic. In addition, the two contaminants were more accumulated in oligotrophic than eutrophic medium. The BCF of copper in shoots was 1356 in oligotrophic condition, while that of arsenic was higher in roots about 620 in the same condition. The TF was less than 1 for arsenic, and higher than 1 for copper, indicating that watermilfoil restrains the translocation of arsenic to shoots, while it has a low capacity to control the translocation of an essential micronutrient like copper. An increase in MDA content was observed under Cu and As stress. On the basis of this experiment, M. alterniflorum has a higher accumulation potential of copper and arsenic, and therefore, it can be a good candidate for the phytofiltration of these two contaminants from water.


Assuntos
Arsênio/metabolismo , Cobre/metabolismo , Magnoliopsida/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Eutrofização
9.
Environ Sci Pollut Res Int ; 23(10): 9598-613, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26846236

RESUMO

To better understand selenium's dynamics in environmental systems, the present study aims to investigate selenium speciation and distribution in black argillaceous sediments, partially fulfilling karstic cavities into the Hydrogeological Experimental Site of Poitiers. These sediments are suspected to be responsible for selenium concentrations exceeding the European Framework Directive's drinking water limit value (10 µg L(-1)) in some specific wells. A combination of a sequential extractions scheme and single parallel extractions was thus applied on a representative argillaceous sample. Impacts of the extractions on mineral dissolution and organic matter mobilization were followed by quantifying major cations and total organic carbon (TOC) in the aqueous extracts. The nature of the released organic matter was characterized using thermochemolysis coupled with gas chromatography-mass spectrometry (GC-MS). About 10 % of selenium from the black argillaceous studied matrix could be defined as 'easily mobilizable' when the majority (around 70 %) revealed associated with the aliphatic and alkaline-soluble organic matter's fraction (about 20 %). In these fractions, selenium speciation was moreover dominated by oxidized species including a mixture of Se(VI) (20-30 %) and Se(IV) (70-80 %) in the 'easily mobilizable' fraction, while only Se(IV) was detected in alkaline-soluble organic matter fraction.


Assuntos
Sedimentos Geológicos/química , Selênio/análise , Selênio/química , Fracionamento Químico , França , Cromatografia Gasosa-Espectrometria de Massas
10.
Environ Monit Assess ; 187(9): 579, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26293891

RESUMO

This study delineates the physical, chemical, and biological effects resulting from anthropogenic and endogenic activities in a sensitive dammed reservoir situated in a semi-arid region. The reservoir is characterized by two major flow regimes: a wet fill hydrologic regime and a dry spill one. A seasonal sampling campaign was carried out over a period of 2 years (2011-2013) where water samples were collected across the water column and from piezometers just outside the perimeter of the reservoir. Similarly, sediments were collected from the corresponding areas beneath the water column. The water samples were analyzed for environmental isotopic ratios, elemental composition, and physical, biological and chemical parameters, whereas the sediment and algal samples were subjected to physical, mineralogical, spectroscopic, and microscopic analyses. This investigation indicated that the dam had resulted in the alteration of the biogeochemical cycle of nutrients as well as the degradation of the sediment and water quality. The hydrological and biogeochemical processes were found to induce vertical downward transport of chemicals towards the fine grained calcareous sediments during the fill mode, whereas the sediments acted as a source of a chemical flux upward through the water column and downward towards the groundwater during the spill mode. The geomorphological characteristics of the reservoir enhanced the strong hydrological connectivity between the surface water and the groundwater where the reservoir responded quickly to natural and anthropogenic changes in the upper watershed. The water and sediments in the sensitive spill mode were of poor quality and should receive more attention due to the potential hazard for the associated hydro-project and the sustainability of the agricultural soil in the long term. Thus, a safe water and sediment management plan should be implemented in order to improve the dam functionality and to safeguard the precious water resources.


Assuntos
Água Doce/química , Sedimentos Geológicos/química , Água Subterrânea/química , Abastecimento de Água , Monitoramento Ambiental
11.
Environ Sci Pollut Res Int ; 22(22): 17799-809, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26160126

RESUMO

Opuntia ficus-indica (Ofi) is a long-domesticated cactus that is widespread throughout arid and semiarid regions. Ofi is grown for both its fruits and edible cladodes, which are flattened photosynthetic stems. Young cladodes develop from mother cladodes, thus forming series of cladodes of different ages. Therefore, successive cladodes may hold some potential for biomonitoring over several years the local atmospheric pollution. In this study, cladodes, roots, dust deposited onto the cladodes, and soil samples were collected in the vicinity of three heavily polluted sites, i.e., a fertilizer industry, the road side of a highway, and mine tailings. The lead content was analyzed using atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS). Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) was used to characterize the cladode surfaces and the nature of dust deposit, and the lead isotopes were analyzed to identify the origin of Pb. The results show that (i) Ofi readily bioaccumulates Pb, (ii) the lead isotopic composition of cladodes evidences a foliar pathway of lead into Ofi and identifies the relative contributions of local Pb sources, and (iii) an evolution of air quality is recorded with successive cladodes, which makes Ofi a potential biomonitor to be used in environmental and health studies.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Frutas/química , Opuntia/química , Monitoramento Ambiental , Isótopos/análise , Chumbo/análise
12.
Environ Monit Assess ; 186(12): 8793-806, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25228528

RESUMO

The environment is witnessing a downgrade caused by the amelioration of the industrial and agricultural sectors, namely, soil and sediment compartments. For those reasons, a comparative study was done between soil cores and sediments taken from two locations in the Qaraaoun reservoir, Lebanon. The soil cores were partitioned into several layers. Each layer was analyzed for several physicochemical parameters, such as functional groups, particle size distribution, ζ-potential, texture, pH, electric conductivity, total dissolved solids, organic matter, cation exchange capacity, active and total calcareous, available sodium and potassium, and metal content (cadmium, copper, and lead). The metal content of each site was linked to soil composition and characteristics. The two sites showed distinguishable characteristics for features such as organic matter, pH, mineral fraction, calcareous, and metal content. The samples taken toward the south site (Q1), though contain lower organic matter than the other but are more calcareous, showed higher metal content in comparison to the other site (Q2) (average metal content of Q1 > Q2; for Cd 3.8 > 1.8 mg/kg, Cu 28.6 > 21.9 mg/kg, Pb 26.7 > 19 mg/kg). However, the metal content in this study did not correlate as much to the organic matter; rather, it was influenced by the location of the samples with respect to the dam, the reservoir's hydrodynamics, the calcareous nature of the soil, and the variation of the industrial and agricultural influence on each site.


Assuntos
Sedimentos Geológicos/química , Metais/análise , Poluentes do Solo/análise , Solo/química , Poluentes da Água/análise , Agricultura , Monitoramento Ambiental , Indústrias , Líbano
13.
Environ Sci Pollut Res Int ; 20(12): 9014-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23764982

RESUMO

One of the most important sources of solid waste in the Mediterranean Basin ecosystem originated from the phosphate fertilizer industries, which discharge phosphogypsum (PG) directly into aquatic environments or are stacked on stockpiles. The present study investigates metal release from PG under the influence of variable pH, increasing PG mass content, and complexing organic matter ligands. Major ions from PG leachates, grain size and charge, main functional groups along with metal leachability (Pb, Cd, Cr, Cu, and Zn) were determined using ion chromatography, laser diffraction, zetameter, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy, respectively. The complete dissolution of PG recorded is at 2 g/L. Saturation and supersaturation with respect to PG may occur at concentrations of 3 and 4 g/L, respectively, revealing a clustering phenomenon leading to heavy metal encapsulation within the aggregates. Organic ligands such as citrate may trigger the cationic exchange within the PG suspension leading to ion release. As these factors are considered as specific process involving the release of contaminants from PG during storage under natural conditions, this study could set the foundations for PG remediation in aquatic environment. Organic ligands under controlled pH conditions could be utilized in treating fertilizer industrial wastes by taking into consideration the particularity of the receiving area, thus decreasing metal hazardous impact on natural media.


Assuntos
Sulfato de Cálcio/química , Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Fósforo/química , Poluentes Químicos da Água/química , Sulfato de Cálcio/análise , Fertilizantes/análise , Fertilizantes/estatística & dados numéricos , Resíduos Industriais/análise , Resíduos Industriais/estatística & dados numéricos , Metais Pesados/análise , Fosfatos/análise , Fosfatos/química , Fósforo/análise , Espectrofotometria Atômica , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...