Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 57(23): 14715-14726, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30452243

RESUMO

Electron paramagnetic resonance, IR, single-crystal X-ray diffraction, and density functional theory computation reveal that the electronic structure of α-diimine-coordinated {Fe(NO)2}10-reduced dinitrosyliron complexes (DNICs) may best be described as [{Fe(NO)2}10-L•], with the added electron residing mainly on the α-diimine ligand framework. The combination of electrochemistry, gas chromatography, Fourier transform infrared, X-ray photoelectron spectroscopy, and scanning electron microscopy-energy-dispersive X-ray studies demonstrates that the cathodic potential promotes/triggers the transformation of an α-diimine-coordinated {Fe(NO)2}10-reduced DNIC into a particulate deposit on the electrode, and electrodeposited-film electrodes, CFeO and CFeNO, are kinetically dominant electrocatalysts responsible for hydrogen evolution reaction (HER) from water with quantitative Faradaic efficiency. In comparison with the CFeO electrode reaching a current density of 10 mA/cm2 with an overpotential of 333 mV for HER, the nitrogen-doped iron oxide electrode, CFeNO, requires 147 mV of overpotential to achieve a current density of 10 mA/cm2 in a 1 M NaOH aqueous solution. The CFeNO electrode exhibits higher kinetic efficiency (Tafel slope of 59 mV/dec) than the CFeO electrode (Tafel slope of 122 mV/dec) in alkaline conditions. As opposed to high Rct (74.3 Ω) displayed by the CFeO electrode, the smaller charge-transfer resistance ( Rct) of the CFeNO electrode (34.0 Ω) demonstrated that the better HER catalytic activity may be ascribed to the incorporation of nitrogen into iron oxide architecture, which increases the surface roughness and electroconductivity of the CFeNO electrode (56.9% iron content and nitrogen electron-donating effect) and improves HER catalysis by polarizing the incoming water molecule (acting as a proton tray). This result implicates that a (NH4)2SO4-assisted nitrogen-doping strategy is a direct and effective method to realize synergistic regulation of the reaction dynamics, catalytically active sites and electronic conductivity, endowing this nitrogen-doped material CFeNO electrode as a promising HER electrocatalyst under alkaline conditions.

2.
J Am Chem Soc ; 139(1): 67-70, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28030770

RESUMO

To carry and deliver nitric oxide with a controlled redox state and rate is crucial for its pharmaceutical/medicinal applications. In this study, the capability of cationic {Fe(NO)2}9 dinitrosyl iron complexes (DNICs) [(RDDB)Fe(NO)2]+ (R = Me, Et, Iso; RDDB = N,N'-bis(2,6-dialkylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene) carrying nearly unperturbed nitric oxide radical to form [(RDDB)Fe(NO)2(•NO)]+ was demonstrated and characterized by IR, UV-vis, EPR, NMR, and single-crystal X-ray diffractions. The unique triplet ground state of [(RDDB)Fe(NO)2(•NO)]+ results from the ferromagnetic coupling between two strictly orthogonal orbitals, one from Fe dz2 and the other a π*op orbital of a unique bent axial NO ligand, which is responsible for the growth of a half-field transition (ΔMS = 2) from 70 to 4 K in variable-temperature EPR measurements. Consistent with the NO radical character of coordinated axial NO ligand in complex [(MeDDB)Fe(NO)2(•NO)]+, the simple addition of MeCN/H2O into CH2Cl2 solution of complexes [(RDDB)Fe(NO)2(•NO)]+ at 25 °C released NO as a neutral radical, as demonstrated by the formation of [S5Fe(NO)2]- from [S5Fe(µ-S)2FeS5]2-.


Assuntos
Ferro/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Radicais Livres/química , Conformação Molecular , Teoria Quântica
3.
J Am Chem Soc ; 136(26): 9424-33, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24917476

RESUMO

Spontaneous transformation of the thermally stable [HS](-)-bound {Fe(NO)2}(9) dinitrosyl iron complex (DNIC) [(HS)2Fe(NO)2](-) (1) into [(NO)2Fe(µ-S)]2(2-) (Roussin's red salt (RRS)) along with release of H2S, probed by NBD-SCN (NBD = nitrobenzofurazan), was observed when DNIC 1 was dissolved in water at ambient temperature. The reversible transformation of RRS into DNIC 1 (RRS → DNIC 1) in the presence of H2S was demonstrated. In contrast, the thermally unstable hydrosulfide-containing mononitrosyl iron complex (MNIC) [(HS)3Fe(III)(NO)](-) (3) and [Fe(III)(SH)4](-) (5) in THF/DMF spontaneously dimerized into the first structurally characterized Fe(III)-hydrosulfide complexes [(NO)(SH)Fe(µ-S)]2(2-) (4) with two {Fe(NO)}(7) motifs antiferromagnetically coupled and [(SH)2Fe(µ-S)]2(2-) (6) resulting from two Fe(III) (S = 5/2) centers antiferromagnetically coupled to yield an S = 0 ground state with thermal occupancy of higher spin states, respectively. That is, the greater the number of NO ligands bound to [2Fe2S], the larger the antiferromagnetic coupling constant. On the basis of DFT computation and the experimental (and calculated) reduction potential (E1/2) of complexes 1, 3, and 5, the NO-coordinate ligand(s) of complexes 1 and 3 serves as the stronger electron-donating ligand, compared to thiolate, to reduce the effective nuclear charge (Zeff) of the iron center and prevent DNIC 1 from dimerization in an organic solvent (MeCN).


Assuntos
Compostos Férricos/química , Sulfeto de Hidrogênio/química , Compostos de Ferro/química , Óxido Nítrico/química , Compostos Nitrosos/química , Ânions , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/química , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Óxidos de Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...