Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882839

RESUMO

Compromised autophagy and mitochondrial dysfunction downregulate chondrocytic activity, accelerating the development of osteoarthritis (OA). Irisin, a cleaved form of fibronectin type III domain containing 5 (FNDC5), regulates bone turnover and muscle homeostasis. Little is known about the effect of Irisin on chondrocytes and the development of osteoarthritis. This study revealed that human osteoarthritic articular chondrocytes express decreased level of FNDC5 and autophagosome marker LC3-II but upregulated levels of oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) and apoptosis. Intra-articular administration of Irisin further alleviated symptoms of medial meniscus destabilization, like cartilage erosion and synovitis, while improved the gait profiles of the injured legs. Irisin treatment upregulated autophagy, 8-OHdG and apoptosis in chondrocytes of the injured cartilage. In vitro, Irisin improved IL-1ß-mediated growth inhibition, loss of specific cartilage markers and glycosaminoglycan production by chondrocytes. Irisin also reversed Sirt3 and UCP-1 pathways, thereby improving mitochondrial membrane potential, ATP production, and catalase to attenuated IL-1ß-mediated reactive oxygen radical production, mitochondrial fusion, mitophagy, and autophagosome formation. Taken together, FNDC5 loss in chondrocytes is correlated with human knee OA. Irisin repressed inflammation-mediated oxidative stress and extracellular matrix underproduction through retaining mitochondrial biogenesis, dynamics and autophagic program. Our analyses shed new light on the chondroprotective actions of this myokine, and highlight the remedial effects of Irisin on OA development.

2.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664681

RESUMO

Bone turnover is sophisticatedly balanced by a dynamic coupling of bone formation and resorption at various rates. The orchestration of this continuous remodeling of the skeleton further affects other skeletal tissues through organ crosstalk. Chronic excessive bone resorption compromises bone mass and its porous microstructure as well as proper biomechanics. This accelerates the development of osteoporotic disorders, a leading cause of skeletal degeneration-associated disability and premature death. Bone-forming cells play important roles in maintaining bone deposit and osteoclastic resorption. A poor organelle machinery, such as mitochondrial dysfunction, endoplasmic reticulum stress, and defective autophagy, etc., dysregulates growth factor secretion, mineralization matrix production, or osteoclast-regulatory capacity in osteoblastic cells. A plethora of epigenetic pathways regulate bone formation, skeletal integrity, and the development of osteoporosis. MicroRNAs inhibit protein translation by binding the 3'-untranslated region of mRNAs or promote translation through post-transcriptional pathways. DNA methylation and post-translational modification of histones alter the chromatin structure, hindering histone enrichment in promoter regions. MicroRNA-processing enzymes and DNA as well as histone modification enzymes catalyze these modifying reactions. Gain and loss of these epigenetic modifiers in bone-forming cells affect their epigenetic landscapes, influencing bone homeostasis, microarchitectural integrity, and osteoporotic changes. This article conveys productive insights into biological roles of DNA methylation, microRNA, and histone modification and highlights their interactions during skeletal development and bone loss under physiological and pathological conditions.


Assuntos
Remodelação Óssea/genética , Epigênese Genética , Osteoporose/genética , Adipogenia , Animais , Autofagia , Reabsorção Óssea/genética , Metilação de DNA , Modelos Animais de Doenças , Endorribonucleases/fisiologia , Código das Histonas , Histona Desacetilases/fisiologia , Histona Metiltransferases/fisiologia , Homeostase , Humanos , Camundongos , MicroRNAs/sangue , MicroRNAs/genética , Mitofagia , Organelas/fisiologia , Osteoblastos/fisiologia , Osteoblastos/ultraestrutura , Osteoporose/metabolismo , Polimorfismo de Nucleotídeo Único
3.
Cells ; 9(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575577

RESUMO

Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.


Assuntos
Adipogenia/fisiologia , Medula Óssea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia
4.
Cell Death Dis ; 10(10): 705, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31543513

RESUMO

Osteoporosis deteriorates bone mass and biomechanical strength, becoming a life-threatening cause to the elderly. MicroRNA is known to regulate tissue remodeling; however, its role in the development of osteoporosis remains elusive. In this study, we uncovered that silencing miR-29a expression decreased mineralized matrix production in osteogenic cells, whereas osteoclast differentiation and pit formation were upregulated in bone marrow macrophages as co-incubated with the osteogenic cells in transwell plates. In vivo, decreased miR-29a expression occurred in ovariectomy-mediated osteoporotic skeletons. Mice overexpressing miR-29a in osteoblasts driven by osteocalcin promoter (miR-29aTg/OCN) displayed higher bone mineral density, trabecular volume and mineral acquisition than wild-type mice. The estrogen deficiency-induced loss of bone mass, trabecular morphometry, mechanical properties, mineral accretion and osteogenesis of bone marrow mesenchymal cells were compromised in miR-29aTg/OCN mice. miR-29a overexpression also attenuated the estrogen loss-mediated excessive osteoclast surface histopathology, osteoclast formation of bone marrow macrophages, receptor activator nuclear factor-κ ligand (RANKL) and C-X-C motif chemokine ligand 12 (CXCL12) expression. Treatment with miR-29a precursor improved the ovariectomy-mediated skeletal deterioration and biomechanical property loss. Mechanistically, miR-29a inhibited RANKL secretion in osteoblasts through binding to 3'-UTR of RANKL. It also suppressed the histone acetyltransferase PCAF-mediated acetylation of lysine 27 in histone 3 (H3K27ac) and decreased the H3K27ac enrichment in CXCL12 promoters. Taken together, miR-29a signaling in osteogenic cells protects bone tissue from osteoporosis through repressing osteoclast regulators RANKL and CXCL12 to reduce osteoclastogenic differentiation. Arrays of analyses shed new light on the miR-29a regulation of crosstalk between osteogenic and osteoclastogenic cells. We also highlight that increasing miR-29a function in osteoblasts is beneficial for bone anabolism to fend off estrogen deficiency-induced excessive osteoclastic resorption and osteoporosis.


Assuntos
Quimiocina CXCL12/genética , MicroRNAs/metabolismo , Osteoclastos/metabolismo , Osteoporose/genética , Ligante RANK/genética , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Fenômenos Biomecânicos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Osteoclastos/citologia , Ovariectomia , Ligante RANK/metabolismo , Fatores de Transcrição de p300-CBP/genética
5.
Bone ; 112: 24-34, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653294

RESUMO

Sclerostin (SOST) is a Wnt signaling inhibitor detrimental to osteogenic differentiation and bone mineral acquisition. While control of SOST action delays the pathogenesis of skeletal disorders, the effects of SOST vaccination on the estrogen deficiency-induced bone deterioration remain elusive. In this study, we generated a SOST-Fc fusion protein which was composed of a SOST peptide Pro-Asn-Ala-Ile-Gly along with an IgG Fc fragment. SOST-Fc vaccination increased serum anti-SOST antibody levels and reduced serum SOST concentrations in mice. In vitro, anti-SOST serum attenuated the SOST-induced inhibition of osteogenic gene expression in osteoblast cultures. Administration with SOST-Fc increased serum levels of bone formation marker osteocalcin and alleviated the ovariectomy escalation of serum resorption markers CTX-1 and TRAP5b concentrations. It remarkably lessened the estrogen deficiency-mediated deterioration of bone mineral density, morphometric characteristics of trabecular bone, and mechanical strength of femurs and lumbar spines. The SOST-Fc-treated skeletal tissue exhibited moderate responses to the adverse actions of ovariectomy to bone mineral accretion, osteoclast surface, trabecular separation, and fatty marrow histopathology. SOST-Fc treatment increased serum osteoclast-inhibitory factor osteoprotegrin levels in conjunction with strong Wnt3a, ß-catenin, and TCF4 immunostaining in osteoblasts, whereas it weakened the estrogen deficiency enhancement of osteoclast-promoting factor receptor activator of nuclear factor-κB ligand. Taken together, blockade of SOST action by SOST-Fc vaccination sustains Wnt signaling, which harmonizes bone mineral accretion and resorption reactions and thereby ameliorates ovariectomy-induced bone loss. This study highlights SOST-Fc fusion protein as a new molecular therapeutic potential for preventing from osteoporotic disorders.


Assuntos
Osso e Ossos/patologia , Estrogênios/deficiência , Glicoproteínas/imunologia , Vacinação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos/sangue , Biomarcadores/sangue , Fenômenos Biomecânicos , Reabsorção Óssea/sangue , Reabsorção Óssea/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiopatologia , Calcificação Fisiológica/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Fêmur/efeitos dos fármacos , Fêmur/patologia , Fêmur/fisiopatologia , Injeções , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos Endogâmicos BALB C , Tamanho do Órgão , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ovariectomia , Receptores Fc/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Soro , Via de Sinalização Wnt/efeitos dos fármacos
6.
J Mol Med (Berl) ; 95(12): 1327-1340, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28884332

RESUMO

Subchondral bone deterioration and osteophyte formation attributable to excessive mineralization are prominent features of end-stage knee osteoarthritis (OA). The cellular events underlying subchondral integrity diminishment remained elusive. This study was undertaken to characterize subchondral mesenchymal stem cells (SMSCs) isolated from patients with end-stage knee OA who required total knee arthroplasty. The SMSCs expressed surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 and lacked CD31, CD45, and MHCII expression. The cell cultures exhibited higher proliferation and greater osteogenesis and chondrogenesis potencies, whereas their population-doubling time and adipogenic lineage commitment were lower than those of bone marrow MSCs (BMMSCs). They also displayed higher expressions of embryonic stem cell marker OCT3/4 and osteogenic factors Wnt3a, ß-catenin, and microRNA-29a (miR-29a), concomitant with lower expressions of joint-deleterious factors HDAC4, TGF-ß1, IL-1ß, TNF-α, and MMP3, in comparison with those of BMMSCs. Knockdown of miR-29a lowered Wnt3a expression and osteogenic differentiation of the SMSCs through elevating HDAC4 translation, which directly regulated the 3'-untranslated region of HDAC4. Likewise, transgenic mice that overexpressed miR-29a in osteoblasts exhibited a high bone mass in the subchondral region. SMSCs in the transgenic mice showed a higher osteogenic differentiation and lower HDAC4 signaling than those in wild-type mice. Taken together, high osteogenesis potency existed in the SMSCs in the osteoarthritic knee. The miR-29a modulation of HDAC4 and Wnt3a signaling was attributable to the increase in osteogenesis. This study shed an emerging light on the characteristics of SMSCs and highlighted the contribution of SMSCs in the exacerbation of subchondral integrity in end-stage knee OA. KEY MESSAGES: Subchondral MSCs (SMSCs) from OA knee expressed embryonic stem cell marker Oct3/4. The SMSCs showed high proliferation and osteogenic and chondrogenic potencies. miR-29a regulated osteogenesis of the SMSCs through modulation of HDAC4 and Wnt3a. A high osteogenic potency of the SMSCs existed in mice overexpressing miR-29a in bone. Aberrant osteogenesis in SMSCs provides a new insight to subchondral damage in OA.


Assuntos
Diferenciação Celular , Condrócitos/patologia , Histona Desacetilases/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteoartrite do Joelho/patologia , Osteogênese , Proteínas Repressoras/genética , Regiões 3' não Traduzidas/genética , Adipogenia/genética , Idoso , Antígenos de Superfície/metabolismo , Sequência de Bases , Diferenciação Celular/genética , Movimento Celular , Proliferação de Células/genética , Forma Celular , Condrogênese/genética , Fibroblastos/patologia , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Luciferases/metabolismo , MicroRNAs/genética , Oligonucleotídeos Antissenso/metabolismo , Osteoartrite do Joelho/genética , Osteogênese/genética , Proteínas Repressoras/metabolismo , Transcriptoma , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...