Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(4): 1763-1774, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36601869

RESUMO

Fluorescent InP-based quantum dots have emerged as valuable nanomaterials for display technologies, biological imaging, and optoelectronic applications. The inclusion of zinc can enhance both their emissive and structural properties and reduce interfacial defects with ZnS or CdS shells. However, the sub-particle distribution of zinc and the role this element plays often remains unclear, and it has previously proved challenging to synthesise Zn-alloyed InP-based nanoparticles using aminophosphine precursors. In this report, we describe the synthesis of alloyed InZnP using zinc carboxylates, achieving colour-tuneable fluorescence from the unshelled core materials, followed by a one-pot ZnS or CdS deposition using diethyldithiocarbamate precursors. Structural analysis revealed that the "core/shell" particles synthesised here were more accurately described as homogeneous extended alloys with the constituent shell elements diffusing through the entire core, including full-depth inclusion of zinc.

2.
Nanoscale ; 13(42): 17793-17806, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34668501

RESUMO

Band bending in colloidal quantum dot (CQD) solids has become important in driving charge carriers through devices. This is typically a result of band alignments at junctions in the device. Whether band bending is intrinsic to CQD solids, i.e. is band bending present at the surface-vacuum interface, has previously been unanswered. Here we use photoemission surface photovoltage measurements to show that depletion regions are present at the surface of n and p-type CQD solids with various ligand treatments (EDT, MPA, PbI2, MAI/PbI2). Using laser-pump photoemission-probe time-resolved measurements, we show that the timescale of carrier dynamics in the surface of CQD solids can vary over at least 6 orders of magnitude, with the fastest dynamics on the order of microseconds in PbS-MAI/PbI2 solids and on the order of seconds for PbS-MPA and PbS-PbI2. By investigating the surface chemistry of the solids, we find a correlation between the carrier dynamics timescales and the presence of oxygen contaminants, which we suggest are responsible for the slower dynamics due to deep trap formation.

3.
Chem Commun (Camb) ; 57(8): 994-997, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399596

RESUMO

Hydroxyapatite nanoparticles (HAP NPs) are blended with TiO2 NPs to prepare mixed mesoporous scaffolds which are used to prepare high efficiency perovskite solar cells (PSCs) with a best power conversion efficiency (PCE) of 20.98%. HAP not only increases the PCE but also limits the concentration of Pb released in water from intentionally broken PSCs by ion sequestration thereby potentially offering a promising in-device fail-safe system.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Chumbo/química , Óxidos/química , Energia Solar , Titânio/química , Durapatita , Microscopia Eletrônica de Varredura , Estrutura Molecular , Nanopartículas
5.
Chem Sci ; 10(4): 1035-1045, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30774899

RESUMO

Solventless thermolysis of molecular precursors followed by liquid phase exfoliation allows access to two-dimensional IV-VI semiconductor nanomaterials hitherto unreachable by a scalable processing pathway. Firstly, the use of metal dithiocarbamate precursors to produce bulk alloys in the series Pb1-x Sn x S (0 ≤ x ≤ 1) by thermolysis is demonstrated. The bulk powders are characterised by powder X-ray diffraction (pXRD), Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. It was found that there is a transition from cubic structures for the Pb-rich alloys including the end compound, PbS (0 ≤ x ≤ 0.4) to layered orthorhombic structures for Sn-rich alloys and the end compound SnS (0.5 ≤ x ≤ 1.0). A smooth elemental progression from lead-rich to tin-rich monochalcogenides across the series of materials is observed. Liquid phase exfoliation was applied to produce two dimensional (2D) nanosheets for a mixed Pb1-x Sn x S alloy (where x = 0.8) in 1-methyl-2-pyrrolidone (NMP) using the synthetic bulk powder as starting material. The nanosheet products were characterized by SEM, atomic force microscopy (AFM) and high angle annular dark field scanning transmission electron microscopy (HAADF STEM). First principle calculations of Pb1-x Sn x S alloys show that the Sn content x modifies the size of the band gap by several 100 meV and that x changes the gap type from indirect in SnS to direct in Pb0.2Sn0.8S. These results are supported by UV-Vis spectroscopy of exfoliated Pb0.2Sn0.8S. The method employed demonstrates a new, scalable, processing pathway which can potentially be used to synthesize a range of synthetic layered structures that can be exfoliated to as-yet unaccessed 2D materials with tunable electronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...