Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Res ; 57(4): 325-337, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37533406

RESUMO

Inflammation is a defensive immune response to external stimuli. However, uncontrolled inflammation may cause potential damage to the host. Therefore, timely control of uncontrolled inflammation is particularly important. Previous studies have found that small molecules with antioxidant activity, such as peroxidase mimic enzymes, can inhibit the development of inflammation. DhHP-6 is a new peptide mimic of peroxidase previously designed by our laboratory. Here, we explored its anti-inflammatory activity in vitro and in vivo. Our results showed that treatment with DhHP-6 significantly reduced the production of reactive oxygen species (ROS), NO, IL-6, and TNF-α in RAW264.7 cells induced by lipopolysaccharides (LPS); in addition, it also blocked the phosphorylation of extracellularly regulated kinase 1 and 2 (ERK1/2) and ribosomal s6 kinase 1 (RSK1), thereby blocking the phosphorylation and degradation of IκBα, and inhibiting the nuclear translocation of p65. Interestingly, treatment with DhHP-6 blocked the phosphorylation of ERK1/2 and myosin light chain kinase (MLCK) in HUVECs induced by LPS. Finally, we found that DhHP-6 treatment significantly reduced the infiltration of immune cells in balloon model rats. Therefore, we believe that DhHP-6 is a potent inhibitor of inflammation.


Assuntos
Lipopolissacarídeos , NF-kappa B , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Permeabilidade Capilar , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peroxidases/metabolismo
2.
Exp Cell Res ; 422(1): 113432, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442518

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) is a brain injury that usually occurs during thrombolytic therapy for acute ischemic stroke and impacts human health. Oxidative stress is one of the major causative factors of CIRI. DhHP-3 is a novel peroxidase-mimicking enzyme that exhibits robust reactive oxygen species (ROS) scavenging ability in vitro. Here, we established in vitro and in vivo models of cerebral ischemia-reperfusion to mechanistically investigate whether DhHP-3 can alleviate CIRI. DhHP-3 could reduce ROS, down-regulate apoptotic proteins, suppress p53 phosphorylation, attenuate the DNA damage response (DDR), and inhibit apoptosis in SH-SY5Y cells subjected to oxygen-glucose deprivation/re-oxygenation (OGD/R) and in the brain of Sprague Dawley rats subjected to transient middle cerebral artery occlusion. In conclusion, DhHP-3 has bioactivity of CIRI inhibition through suppression of the ROS-induced apoptosis.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Neuroblastoma , Traumatismo por Reperfusão , Ratos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/genética , Isquemia Encefálica/metabolismo , Estresse Oxidativo , Apoptose , Peptídeos/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292932

RESUMO

In recent years, cyclic peptides have attracted much attention due to their chemical and enzymatic stability, low toxicity, and easy modification. In general, the self-assembled nanostructures of cyclic peptides tend to form nanotubes in a cyclic stacking manner through hydrogen bonding. However, studies exploring other assembly strategies are scarce. In this context, we proposed a new assembly strategy based on cyclic peptides with covalent self-assembly. Here, cyclic peptide-(DPDPDP) was rationally designed and used as a building block to construct new assemblies. With cyclo-(DP)3 as the structural unit and 2,2'-diamino-N-methyldiethylamine as the linker, positively charged nanospheres ((CP)6NS) based on cyclo-(DP)3 were successfully constructed by covalent self-assembly. We assessed their size and morphology by scanning electron microscopy (SEM), TEM, and DLS. (CP)6NS were found to have a strong positive charge, so they could bind to siRNA through electrostatic interactions. Confocal microscopy analysis and cell viability assays showed that (CP)6NS had high cellular internalization efficiency and low cytotoxicity. More importantly, real-time polymerase chain reaction (PCR) and flow cytometry analyses indicated that (CP)6NS-siRNA complexes potently inhibited gene expression and promoted tumor cell apoptosis. These results suggest that (CP)6NS may be a potential siRNA carrier for gene therapy.


Assuntos
Nanosferas , Nanoestruturas , Nanotubos , RNA Interferente Pequeno/farmacologia , Peptídeos Cíclicos/química , Nanosferas/química , Nanotubos/química , Nanoestruturas/química
4.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948105

RESUMO

Cell penetrating peptides (CPPs) are peptides that can directly adapt to cell membranes and then permeate into cells. CPPs are usually covalently linked to the surface of nanocarriers to endow their permeability to the whole system. However, hybrids with lipids or polymers make the metabolism much more sophisticated and even more difficult to determine. In this study, we present a continuous sequence of 18 amino acids (FFAARTMIWY(d-P)GAWYKRI). It forms nanospheres around 170 nm, which increase slightly after loading with siRNA and DOX. Notably, it can be internalized by cancer cells mainly through electronic interactions and PD-L1-mediated endocytosis. Compared with poly-l-lysine and polyethyleneimine, it has a much higher efficiency (about four times) of gene transduction while lowering toxicity. In the treatment of cancer, it causes apoptosis (21%) and inhibits the expression of SURVIVIN protein in vitro. In vivo, it shows good biocompatibility as there are no changes in mice's body weight. When administering peptide-siRNA-DOX, tumor growth is inhibited the most (about three times). These results above prove the sequence to be a good candidate for gene therapy and drug delivery.


Assuntos
Antígeno B7-H1/metabolismo , Peptídeos Penetradores de Células , Doxorrubicina , Sistemas de Liberação de Medicamentos , Endocitose , Nanosferas , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanosferas/química , Nanosferas/uso terapêutico , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Survivina/genética , Survivina/metabolismo
5.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830111

RESUMO

Although some breast cancer patients die due to tumor metastasis rather than from the primary tumor, the molecular mechanism of metastasis remains unclear. Therefore, it is necessary to inhibit breast cancer metastasis during cancer treatment. In this case, after designing and synthesizing CTI-2, we found that CTI-2 treatment significantly reduced breast cancer cell metastasis in vivo and in vitro. Notably, with the treatment of CTI-2 in breast cancer cells, the expression level of E-cadherin increased, while the expression level of N-cadherin and vimentin decreased. In addition, after CTI-2 treatment, those outflow levels for p-ERK, p-p38, and p-JNK diminished, while no significant changes in the expression levels of ERK, JNK, or p38 were observed. Our conclusion suggested that CTI-2 inhibits the epithelial-mesenchymal transition (EMT) of breast carcinoma cells by inhibiting the activation of the mitogen-activated protein kinase (MAPK) signaling pathway, thereby inhibiting the metastasis of breast tumor cells. Therefore, we believe that CTI-2 is another candidate for breast tumor medication.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Pharm ; 608: 121066, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34481009

RESUMO

Doxorubicin (DOX) is one of the most commonly used and effective chemotherapy drugs among anthracyclines. An inherent limitation of DOX is its nonspecificity, which can cause serious side effects, thereby preventing the therapeutic use of high drug doses. In this study, we designed and created a simple nano-drug delivery system (PEG-MAF = P) with low biological toxicity that was responsive to the tumor environment. PEG-MAF = P was designed to self-assemble into nanospheres via control of a phenylalanine dipeptide (FF). The N-terminus of the peptide was linked to aldehyde groups at both ends of oxidized Pluronic F127 (F127-CHO) via Schiff bonds. The acidic environment surrounding the tumors was suitable for triggering the Schiff bonds, causing the nanospheres to disintegrate. The C-terminus of FF was connected to a ligand peptide, ATN-161, which was able to recognize cells expressing high levels of integrin α5ß1 antigens both in vivo and in vitro. To prevent the impediment in drug release, PEG was linked via a matrix metalloproteinase-9 response peptide. Therefore, in an acidic tumor microenvironment containing MMP-9, PEG-MAF = P disintegrated and rapidly released the drug. PEG-MAF = P exhibited low cytotoxicity, high drug-loading rate, and excellent antitumor properties both in vivo and in vitro. Compared with free DOX, PEG-MAF = P-DOX reduced injury to normal tissues.


Assuntos
Portadores de Fármacos , Microambiente Tumoral , Antibióticos Antineoplásicos , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Polietilenoglicóis
7.
RSC Adv ; 11(3): 1461-1471, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424141

RESUMO

The treatment of breast cancer mainly relies on chemotherapy drugs, which present significant side effects. The most typical example is the cardiotoxicity and bone marrow suppression associated with doxorubicin (DOX). Therefore, this drug is not the first choice in clinical treatment. We designed ATN-FFPFF-ATN, a new targeted antitumor drug carrier, polymerized from phenylalanine dipeptide (FF), ATN-161 peptide, and Pluronic® F-127. The peptide and Pluronic® F-127 are linked with acetal and are, therefore, acid-sensitive. As cancer can reduce pH through complex mechanisms and subsequently maintain acid ambience, our vehicle can smartly unravel at a peculiar position, through which the drug can specifically accumulate inside the tumor. ATN-161 is a protein ligand of integrin α5ß1, which is highly expressed on the surface of some breast cancer cells. This targeting peptide sequence can play a role in the selective delivery of DOX to tumor cells. The DOX-carrying vector was able to significantly inhibit cell proliferation and promote cell apoptosis in MDA-MB-231 cells. Based on these results, ATN-FFPFF-ATN with pH response is a promising vehicle for DOX delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...