Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(26): 266602, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38996328

RESUMO

Twisted moiré materials, a new class of layered structures with different twist angles for neighboring layers, are attracting great attention because of the rich intriguing physical phenomena associated with them. Of particular interest are the topological network modes, first proposed in the small angle twisted bilayer graphene under interlayer bias. Here we report the observations of such topological network modes in twisted moiré phononic crystals without requiring the external bias fields. Acoustic topological network modes that can be constructed in a wide range of twist angles are both observed in the domain walls with and without reconstructions, which serve as the analogy of the lattice relaxations in electronic moiré materials. Topological robustness of the topological network modes is observed by introducing valley-preserved defects to the network channel. Furthermore, the network can be reconfigured into two-dimensional patterns with any desired connectivity, offering a unique prototype platform for acoustic applications.

2.
Sci Bull (Beijing) ; 69(11): 1660-1666, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653684

RESUMO

Bound states in the continuum (BICs) are spatially localized states with energy embedded in the continuum spectrum of extended states. The combination of BICs physics and nontrivial band topology theory givs rise to topological BICs, which are robust against disorders and meanwhile, the merit of conventional BICs is attracting wide attention recently. Here, we report valley edge states as topological BICs, which appear at the domain wall between two distinct valley topological phases. The robustness of such BICs is demonstrated. The simulations and experiments show great agreement. Our findings of valley related topological BICs shed light on both BICs and valley physics, and may foster innovative applications of topological acoustic devices.

3.
Phys Rev Lett ; 132(6): 066601, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394560

RESUMO

Higher-order topological insulators and semimetals, which generalize the conventional bulk-boundary correspondence, have attracted extensive research interest. Among them, higher-order Weyl semimetals feature twofold linear crossing points in three-dimensional momentum space, 2D Fermi-arc surface states, and 1D hinge states. Higher-order nodal-point semimetals possessing Weyl points or Dirac points have been implemented. However, higher-order nodal-line or nodal-surface semimetals remain to be further explored in experiments in spite of many previous theoretical efforts. In this work, we realize a second-order nodal-line semimetal in 3D phononic crystals. The bulk nodal lines, 2D drumhead surface states guaranteed by Zak phases, and 1D flat hinge states attributed to k_{z}-dependent quadrupole moments are observed in simulations and experiments. Our findings of nondispersive surface and hinge states may promote applications in acoustic sensing and energy harvesting.

4.
Adv Mater ; : e2307998, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072673

RESUMO

Non-Hermitian (NH) physics describes novel phenomena in open systems that allow generally complex spectra. Introducing NH physics into topological metamaterials, which permits explorations of topological wave phenomena in artificially designed structures, not only enables the experimental verification of exotic NH phenomena in these flexible platforms, but also enriches the manipulation of wave propagation beyond the Hermitian cases. Here, a perspective on the advances in the research of NH topological phononic metamaterials is presented, which covers the exceptional points and their topological geometries, the skin effect related to the topology of complex spectra, the interplay of NH effects and topological states in phononic metamaterials, etc.

5.
Nat Commun ; 14(1): 4569, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516772

RESUMO

Exceptional points and skin effect, as the two distinct hallmark features unique to the non-Hermitian physics, have each attracted enormous interests. Recent theoretical works reveal that the topologically nontrivial exceptional points can guarantee the non-Hermitian skin effect, which is geometry-dependent, relating these two unique phenomena. However, such novel relation remains to be confirmed by experiments. Here, we realize a non-Hermitian phononic crystal with exceptional points, which exhibits the geometry-dependent skin effect. The exceptional points connected by the bulk Fermi arcs, and the skin effects with the geometry dependence, are evidenced in simulations and experiments. Our work, building an experimental bridge between the exceptional points and skin effect and uncovering the unconventional geometry-dependent skin effect, expands a horizon in non-Hermitian physics.

6.
Phys Rev Lett ; 130(11): 116103, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001063

RESUMO

Higher-order topological phases have raised widespread interest in recent years with the occurrence of the topological boundary states of dimension two or more less than that of the system bulk. The higher-order topological states have been verified in gapped phases, in a wide variety of systems, such as photonic and acoustic systems, and recently also observed in gapless semimetal phase, such as Weyl and Dirac phases, in systems alike. The higher-order topology is signaled by the hinge states emerging in the common band gaps of the bulk states and the surface states. In this Letter, we report our first prediction and observation of a new type of hinge states, the bound hinge states in the continuum (BHICs) bulk band, in a higher-order Weyl semimetal implemented in phononic crystal. In contrast to the hinge state in gap, which is characterized by the bulk polarization, the BHIC is identified by the nontrivial surface polarization. The finding of the topological BHICs broadens our insight to the topological states, and may stimulate similar researches in other systems such as electronic, photonic, and cold atoms systems. Our Letter may pave the way toward high-Q acoustic devices in application.

7.
Nat Commun ; 13(1): 5916, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207327

RESUMO

The most useful property of topological materials is perhaps the robust transport of topological edge modes, whose existence depends on bulk topological invariants. This means that we need to make volumetric changes to many atoms in the bulk to control the transport properties of the edges in a sample. We suggest here that we can do the reverse in some cases: the properties of the edge can be used to induce chiral transport phenomena in some bulk modes. Specifically, we show that a topologically trivial 2D hexagonal phononic crystal slab (waveguide) bounded by hard-wall boundaries guarantees the existence of bulk modes with chiral anomaly inside a pseudogap due to finite size effect. We experimentally observed robust valley-selected transport, complete valley state conversion, and valley focusing of the chiral anomaly bulk states (CABSs) in such phononic crystal waveguides. The same concept also applies to electromagnetics.

8.
Phys Rev Lett ; 128(24): 246601, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776454

RESUMO

Nodal lines are symmetry-protected one-dimensional band degeneracies in momentum space, which can appear in numerous topological configurations such as nodal rings, chains, links, and knots. Very recently, non-Abelian topological physics have been proposed in space-time inversion (PT) symmetric systems. One of the most special configurations in such systems is the earring nodal link, composing of a nodal chain linking with an isolated nodal line. Such earring nodal links have not been observed in real systems. We designed phononic crystals with earring nodal links, and experimentally observed two different kinds of earring nodal links by measuring the band structures. We found that the order of the nodal chain and line can be switched after band inversion but their link cannot be severed. Our Letter provides experimental evidence for phenomena unique to non-Abelian band topology and our acoustic system provides a convenient platform for studying the new materials carrying non-Abelian charges.

9.
Nat Commun ; 13(1): 508, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082291

RESUMO

Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences have been presented for this intriguing topological observable in solid-state systems, owing to the huge challenges in creating controllable dislocations and conclusively identifying topological signals. Here, using a three-dimensional acoustic weak topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented control over wave propagations.

10.
Opt Lett ; 46(18): 4597-4600, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525056

RESUMO

An effective medium theory is proposed to characterize two-dimensional dielectric photonic crystals (PCs) exhibiting quadrupole resonances. In addition to the effective permittivity and permeability associated with electric and magnetic dipoles, we obtain a local effective parameter to describe the contributions of quadrupole resonances by taking the low frequency limit of multiple-scattering theory. These effective parameters can be used to predict the characteristics of double-Dirac-cone PCs, showing good agreement with the numerical results. Moreover, we show that, after introducing the new effective parameter, the double-Dirac-cone PCs can be regarded as a generalization of the traditional double-zero-index metamaterials.

11.
Phys Rev Lett ; 125(18): 185502, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196270

RESUMO

It is well known that the acoustic properties of fluid are characterized by mass density and bulk modulus. Metafluids, the fluid metamaterials, generalize the natural fluid, which can accommodate extreme and/or negative values of these two parameters. Here, we further show that the metafluids, composed of periodic thin-walled hollow cylinders immersed in fluid, can provide not only the designable effective mass density and bulk modulus, but also a completely new effective parameter, which appears in the wave velocities as a role similar to the shear modulus of solid. The new effective parameter, describing the response of the fluid to the quadrupolar component of waves, is obtained by generalizing the effective medium theory (EMT) to include the second-order effects, which is vanishing and neglected in the conventional EMT, but giant here in the metafluids with built-in quadrupolar resonances. With the discovery of the metafluids of shearlike moduli, our Letter extends the concept of metafluids and will have a great significance in the field of metamaterials.

12.
Nat Commun ; 11(1): 3000, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533082

RESUMO

Valley pseudospin, labeling the pair of energy extrema in momentum space, has been attracting attention because of its potential as a new degree of freedom in manipulating electrons or classical waves. Recently, topological valley edge transport of sound, by virtue of the gapless valley-locked edge states, has been observed in the domain walls of sonic crystals. Here, by constructing a heterostructure with sonic crystals, a topological waveguide is realized. The waveguide states feature gapless dispersion, momentum-valley locking, immunity against defects, and a high capacity for energy transport. With a designable size, the heterostructures are more flexible for interfacing with the existing acoustic devices than the domain wall structures. Such heterostructures may serve as versatile new devices for acoustic wave manipulation, such as acoustic splitting, reflection-free guiding and converging.

13.
Phys Rev Lett ; 124(20): 206601, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501055

RESUMO

A quadrupole topological insulator, being one higher-order topological insulator with nontrivial quadrupole quantization, has been intensely investigated very recently. However, the tight-binding model proposed for such emergent topological insulators demands both positive and negative hopping coefficients, which imposes an obstacle in practical realizations. Here, we introduce a feasible approach to design the sign of hopping in acoustics, and construct the first acoustic quadrupole topological insulator that stringently emulates the tight-binding model. The inherent hierarchy quadrupole topology has been experimentally confirmed by detecting the acoustic responses at the bulk, edge, and corner of the sample. Potential applications can be anticipated for the topologically robust in-gap states, such as acoustic sensing and energy trapping.

14.
Nat Commun ; 11(1): 1820, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286334

RESUMO

Novel quasiparticles beyond those mimicking the elementary high-energy particles such as Dirac and Weyl fermions have attracted great interest in condensed-matter physics and materials science. Here we report an experimental observation of the long-desired quadratic Weyl points by using a three-dimensional chiral metacrystal of sound waves. Markedly different from the newly observed unconventional quasiparticles, such as the spin-1 Weyl points and the charge-2 Dirac points featuring respectively threefold and fourfold band crossings, the charge-2 Weyl points identified here are simply twofold degenerate, and the dispersions around them are quadratic in two directions and linear in the third one. Besides the essential nonlinear bulk dispersions, we further unveil the exotic double-helicoid surface arcs that emanate from a projected quadratic Weyl point and terminate at two projected conventional Weyl points. This unique global surface connectivity provides conclusive evidence for the double topological charges of such unconventional topological nodes.

15.
Light Sci Appl ; 9: 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194952

RESUMO

Dirac semimetals, the materials featuring fourfold degenerate Dirac points, are critical states of topologically distinct phases. Such gapless topological states have been accomplished by a band-inversion mechanism, in which the Dirac points can be annihilated pairwise by perturbations without changing the symmetry of the system. Here, we report an experimental observation of Dirac points that are enforced completely by the crystal symmetry using a nonsymmorphic three-dimensional phononic crystal. Intriguingly, our Dirac phononic crystal hosts four spiral topological surface states, in which the surface states of opposite helicities intersect gaplessly along certain momentum lines, as confirmed by additional surface measurements. The novel Dirac system may release new opportunities for studying elusive (pseudo) and offer a unique prototype platform for acoustic applications.

16.
Phys Rev Lett ; 122(13): 136802, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31012611

RESUMO

Recently, intense efforts have been devoted to realizing classical analogues of various topological phases of matter. In this Letter, we explore the intriguing Weyl physics by a simple one-dimensional sonic crystal, in which two extra structural parameters are combined to construct a synthetic three-dimensional space. Based on our ultrasonic experiments, we have not only observed the synthetic Weyl points, but also probed the novel reflection phase singularity that connects inherently with the topological robustness of Weyl points. The presence of topologically nontrivial interface modes has been demonstrated further. As the first realization of topological acoustics in synthetic space, our study exhibits great potential of probing high-dimensional topological phenomena by such easily fabricated and detected low-dimension acoustic systems.

17.
Nature ; 560(7716): 61-64, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068954

RESUMO

Reflection and refraction of waves occur at the interface between two different media. These two fundamental interfacial wave phenomena form the basis of fabricating various wave components, such as optical lenses. Classical refraction-now referred to as positive refraction-causes the transmitted wave to appear on the opposite side of the interface normal compared to the incident wave. By contrast, negative refraction results in the transmitted wave emerging on the same side of the interface normal. It has been observed in artificial materials1-5, following its theoretical prediction6, and has stimulated many applications including super-resolution imaging7. In general, reflection is inevitable during the refraction process, but this is often undesirable in designing wave functional devices. Here we report negative refraction of topological surface waves hosted by a Weyl phononic crystal-an acoustic analogue of the recently discovered Weyl semimetals8-12. The interfaces at which this topological negative refraction occurs are one-dimensional edges separating different facets of the crystal. By tailoring the surface terminations of the Weyl phononic crystal, constant-frequency contours of surface acoustic waves can be designed to produce negative refraction at certain interfaces, while positive refraction is realized at different interfaces within the same sample. In contrast to the more familiar behaviour of waves at interfaces, unwanted reflection can be prevented in our crystal, owing to the open nature of the constant-frequency contours, which is a hallmark of the topologically protected  surface states in Weyl crystals8-12.

18.
Phys Rev E ; 96(5-1): 052604, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347641

RESUMO

Here we report an experimental observation of the self-organization effect of polystyrene particles formed by acoustically induced interaction forces. Two types of stable configurations are observed experimentally: one is mechanically equilibrium and featured by nonzero interparticle separations, and the other corresponds to a closely packed assembly, which is created by strong attractions among the aggregated particles. For the former case involving two or three particles, the most probable interparticle separations (counted for numerous independent initial arrangements) agree well with the theoretical predictions. For the latter case, the number of the final stable configurations grows with the particle number, and the occurrence probability of each configuration is interpreted by a simple geometric model.

19.
Phys Rev Lett ; 116(9): 093901, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991176

RESUMO

Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

20.
Sci Rep ; 5: 13063, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26279478

RESUMO

Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90(o)). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...