Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 150: 111505, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867952

RESUMO

Fibronectin (Fn) has been observed to assemble in the extracellular matrix (ECM) of cell culture and stretch in response to the external force. The alteration of molecule domain functions generally follows the extension of Fn. Several researchers have investigated fibronectin extensively in molecular architecture and conformation structure. However, the bulk material behavior of the Fn in the ECM has not been fully depicted at the cell scale, and many studies have ignored physiological conditions. Conversely, microfluidic techniques that explore cellular properties based on cell deformation and adhesion have emerged as a powerful and effective platform to study cell rheological transformation in a physiological environment. However, directly quantifying properties from microfluidic measurements remains a challenge. Therefore, it is an efficient way to combine experimental measurements with a robust and reliable numerical framework to calibrate the mechanical stress distribution in the test sample. In this paper, we present a monolithic Lagrangian fluid-structure interaction (FSI) approach within the Optimal Transportation Meshfree (OTM) framework that enables the investigation of the adherent Red Blood Cell (RBC) interacting with fluid and overcomes the drawbacks of the traditional computational tools such as the mesh entanglement and interface tracking, etc. This study aims to assess the material properties of the RBC and Fn fiber by calibrating the numerical predictions to experimental measurements. Moreover, a physical-based constitutive model will be proposed to describe the bulk behavior of the Fn fiber inflow, and the rate-dependent deformation and separation of the Fn fiber will be discussed.


Assuntos
Fibronectinas , Fenômenos Mecânicos , Fibronectinas/análise , Fibronectinas/química , Fibronectinas/metabolismo , Conformação Molecular , Estresse Mecânico , Eritrócitos/metabolismo , Matriz Extracelular/metabolismo , Adesão Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...