Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1187504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397958

RESUMO

Introduction: The all-on-4 concept is widely used in clinical practice. However, the biomechanical changes following the alteration of anterior-posterior (AP) spread in all-on-4 implant-supported prostheses have not been extensively studied. Methods: Three-dimensional finite element analysis was used to compare the biomechanical behavior of all-on-4 and all-on-5 implant-supported prostheses with a change in anterior-posterior (AP) spread. A three-dimensional finite element analysis was performed on a geometrical mandible model containing 4 or 5 implants. Four different implant configurations were modeled by varying the angle of inclination of the distal implants (0°and 30°), including all-on-4a, all-on-4b, all-on-5a, and all-on-5b, and a 100 N force was successively applied to the anterior and unilateral posterior teeth to observe and analyze the differences in the biomechanical behavior of each model under the static influence at different position. Results: Adding an anterior implant to the dental arch according to the all-on-4 concept with a distal 30° tilt angle implant exhibited the best biomechanical behavior. However, when the distal implant was implanted axially, there was no significant difference between the all-on-4 and all-on-5 groups. Discussion: In the all-on-5 group, increasing the AP spread with tilted terminal implants showed better biomechanical behavior. It can be concluded that placing an additional implant in the midline of the atrophic edentulous mandible and increasing the AP spread might be beneficial in improving the biomechanical behavior of tilted distal implants.

2.
Int J Numer Method Biomed Eng ; 39(7): e3716, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37096732

RESUMO

Long-term excessive forces loading from muscles of mastication during mandibular motions may result in disorders of temporomandibular joint (TMJ), myofascial pain, and restriction of jaw opening and closing. Current analysis of mandibular movements is generally conducted with a single opening, protrusive and lateral movements rather than composite motions that the three can be combined arbitrarily. The objective of this study was to construct theoretical equations reflecting the correlation between composite motions and muscle forces, and consequently to analyze the mandibular composite motions and the tensions of muscles of mastication in multiple dimensions. The muscle performances such as strength, power, and endurance of mandibular motions were analyzed and the effective motion range of each muscle was derived. The mandibular composite motion model was simplified by calculating muscle forces. An orthogonal rotation matrix based on muscle forces was established. A 3D printed mandible was used for in vitro simulation of mandibular motions on a robot and measurements of force were conducted. The theoretical model and forces were verified through a trajectory tracing experiment of mandibular motions driven by a 6-axis robot with force/torque sensors. Through the analysis of the mandibular composite motion model, the motion form was obtained and transferred to guide the motions of the robot. The error between the experimental data obtained by the 6-axis force/torque sensors and the theoretical data was within 0.6 N. Our system provides excellent visualization for analyzing the changes of muscle forces and locations during various mandibular movements. It is useful for clinicians to diagnose and formulate treatment for patients who suffer from (temporomandibular joint disorders) TMDs and restrict jaw movements. The system can potentially offer the comparison before and after treatment of TMDs or jaw surgery.


Assuntos
Mandíbula , Transtornos da Articulação Temporomandibular , Humanos , Articulação Temporomandibular , Movimento , Mastigação/fisiologia , Amplitude de Movimento Articular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...