Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(12): 105663, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505936

RESUMO

Bacteria of the genus Pseudomonas consume preferred carbon substrates in nearly reverse order to that of enterobacteria, and this process is controlled by RNA-binding translational repressors and regulatory ncRNA antagonists. However, their roles in microbe-plant interactions and the underlying mechanisms remain uncertain. Here we show that root-associated diazotrophic Pseudomonas stutzeri A1501 preferentially catabolizes succinate, followed by the less favorable substrate citrate, and ultimately glucose. Furthermore, the Hfq/Crc/CrcZY regulatory system orchestrates this preference and contributes to optimal nitrogenase activity and efficient root colonization. Hfq has a central role in this regulatory network through different mechanisms of action, including repressing the translation of substrate-specific catabolic genes, activating the nitrogenase gene nifH posttranscriptionally, and exerting a positive effect on the transcription of an exopolysaccharide gene cluster. Our results illustrate an Hfq-mediated mechanism linking carbon metabolism to nitrogen fixation and root colonization, which may confer rhizobacteria competitive advantages in rhizosphere environments.

2.
Microorganisms ; 10(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36296262

RESUMO

Diazotroph mutants designed using metabolic engineering to excrete surplus ammonium were used to enhance nitrogen fixation and plant growth, as the levels of nitrogen fixation attained with diazotrophs are insufficient for the plant's needs. In this study, wild-type (A1501) and engineered ammonium-excreting (1568/pVA3) strains of nitrogen-fixing Pseudomonas stutzeri strains were tested in vitro based on plant growth-promoting traits, such as phosphate solubilization ability, indole acetic acid (IAA) production and nitrogenase activities, as well as ammonium excretion as affected by mannitol-mediated osmotic stress. The maize plant growth-promoting effect of the A1501 and 1568/pVA3 strains was evaluated in pots and in the field, and the 15N-dilution technique was employed to assess the proportion of plant nitrogen derived from nitrogen fixation. The results demonstrate that the 1568/pVA3 strain displayed higher IAA production and nitrogenase activity than A1501 and released significant quantities of ammonium. After 50 days, in all of the conditions assayed, maize inoculated with 1568/pVA3 accumulated more plant biomass (3.3% on average) and fixed N (39.4% on average) than plants inoculated with A1501. In the field experiment, the grain yield of maize was enhanced by 5.6% or 5.9% due to the inoculation of seeds with 1568/pVA3 in the absence or presence of exogenous N fertilizer, respectively. Therefore, the engineered P. stutzeri strain tested in the greenhouse and field was shown to perform better than the wild-type strain with respect to maize growth parameters and biologically fixed nitrogen.

3.
Int J Ophthalmol ; 15(7): 1035-1043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919335

RESUMO

AIM: To compare the damage of light-emitting diodes (LEDs) with different color rendering indexes (CRIs) to the ocular surface and retina of rats. METHODS: Totally 20 Sprague-Dawley (SD) rats were randomly divided into four groups: the first group was normal control group without any intervention, other three groups were exposed by LEDs with low (LED-L), medium (LED-M), and high (LED-H) CRI respectively for 12h a day, continuously for 4wk. The changes in tear secretion (Schirmer I test, SIt), tear film break-up time (BUT), and corneal fluorescein sodium staining (CFS) scores were compared at different times (1d before experiment, 2 and 4wk after the experiment). The histopathological changes of rat lacrimal gland and retina were observed at 4wk, and the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in lacrimal gland were detected by immunofluorescence method. RESULTS: With the increase of light exposed time, the CFS value of each light exposed group continued to increase, and the BUT and SIt scores continued to decrease, which were different from the control group, and the differences between the light exposed groups were statistically significant. Hematoxylin-eosin (HE) results showed that the lacrimal glands of each exposed group were seen varying degrees of acinar atrophy, vacuole distribution, increasing of eosinophil granules, etc.; the retina showed obvious reduction of photoreceptor cell layer and changes in retinal thickness; LED-L group has the most significant change in all tests. Immunofluorescence suggested that the positive expressions of TNF-α and IL-6 in the lacrimal glands of each exposed group were higher than those of the control group. CONCLUSION: LED exposure for 4wk can cause the pathological changes of lacrimal gland and retina of rats, and increase the expression of TNF-α and IL-6 in lacrimal gland, the degree of damage is negatively correlated with the CRI.

4.
World J Microbiol Biotechnol ; 38(7): 126, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666348

RESUMO

Nitrogen metabolism is the most basic process of material and energy metabolism in living organisms, and processes involving the uptake and use of different nitrogen sources are usually tightly regulated at the transcriptional and post-transcriptional levels. Bacterial regulatory noncoding RNAs are novel post-transcriptional regulators that repress or activate the expression of target genes through complementarily pairing with target mRNAs; therefore, these noncoding RNAs play an important regulatory role in many physiological processes, such as bacterial substance metabolism and stress response. In recent years, a study found that noncoding RNAs play a vital role in the post-transcriptional regulation of nitrogen metabolism, which is currently a hot topic in the study of bacterial nitrogen metabolism regulation. In this review, we present an overview of recent advances that increase our understanding on the regulatory roles of bacterial noncoding RNAs and describe in detail how noncoding RNAs regulate biological nitrogen fixation and nitrogen metabolic engineering. Furthermore, our goal is to lay a theoretical foundation for better understanding the molecular mechanisms in bacteria that are involved in environmental adaptations and metabolically-engineered genetic modifications.


Assuntos
Pequeno RNA não Traduzido , Bactérias/genética , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
5.
Genes (Basel) ; 13(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35627252

RESUMO

Pseudomonas stutzeri A1501, a plant-associated diazotrophic bacterium, prefers to conform to a nitrogen-fixing biofilm state under nitrogen-deficient conditions. The extracytoplasmic function (ECF) sigma factor AlgU is reported to play key roles in exopolysaccharide (EPS) production and biofilm formation in the Pseudomonas genus; however, the function of AlgU in P. stutzeri A1501 is still unclear. In this work, we mainly investigated the role of algU in EPS production, biofilm formation and nitrogenase activity in A1501. The algU mutant ΔalgU showed a dramatic decrease both in the EPS production and the biofilm formation capabilities. In addition, the biofilm-based nitrogenase activity was reduced by 81.4% in the ΔalgU mutant. The transcriptional level of pslA, a key Psl-like (a major EPS in A1501) synthesis-related gene, was almost completely inhibited in the algU mutant and was upregulated by 2.8-fold in the algU-overexpressing strain. A predicted AlgU-binding site was identified in the promoter region of pslA. The DNase I footprinting assays indicated that AlgU could directly bind to the pslA promoter, and ß-galactosidase activity analysis further revealed mutations of the AlgU-binding boxes drastically reduced the transcriptional activity of the pslA promoter; moreover, we also demonstrated that AlgU was positively regulated by RpoN at the transcriptional level and negatively regulated by the RNA-binding protein RsmA at the posttranscriptional level. Taken together, these data suggest that AlgU promotes EPS production and nitrogen-fixing biofilm formation by directly activating the transcription of pslA, and the expression of AlgU is controlled by RpoN and RsmA at different regulatory levels.


Assuntos
Pseudomonas stutzeri , Fator sigma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
6.
Antonie Van Leeuwenhoek ; 115(5): 573-587, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35312873

RESUMO

A novel bacterium, designated Z-25 T, was isolated from a rice paddy rhizosphere soil sample from Wuchang County, China. The Z-25 T strain is gram-negative, rod-shaped, non-spore-forming, aerobic, motile by unipolar flagella and straw white in color. A phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain Z-25 belongs to the genus Shinella, and the closest members are Shinella zoogloeoides ATCC 19623 T with 98.58% similarity, S. kummerowiae CCBAU 25,048 T (98.03%) and S. granuli Ch06 T (97.37%). The average nucleotide identity and in silico DNA-DNA hybridization values between strain Z-25 T and the closest members were less than 85.29% and 28.70%, respectively. The predominant fatty acids were the sums of features comprising C18:1 ω7c and/or C18:1 ω6c (34.62%), C18:1 ω7c -11-methyl (20.48%), and C19:0 cyclo ω8c (18.19%). The only respiratory quinone was ubiquinone-10, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Additionally, a genome analysis showed that Z-25 T presented potential functional genes related to the degradation of zearalenone (ZEN). An HPLC analysis indicated that Z-25 T could remove 74.13% of 10 mg/L ZEN after 144 h at 30 °C. Therefore, based on phenotypic, chemotaxonomic, phylogenetic and genotypic analyses, strain Z-25 T represents a novel species in the genus Shinella, for which the name Shinella oryzae sp. nov. is proposed. The type strain is Z-25 T (= GDMCC 1.2424 T = KCTC 82660 T).


Assuntos
Oryza , Zearalenona , Técnicas de Tipagem Bacteriana , DNA Bacteriano/análise , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Zearalenona/análise
7.
World J Microbiol Biotechnol ; 37(10): 177, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524580

RESUMO

Pseudomonas stutzeri A1501 is a model strain used to study associative nitrogen fixation, and it possesses the nitrogen regulatory NtrC protein in the core genome. Nitrogen sources represent one of the important factors affecting the efficiency of biological nitrogen fixation in the natural environment. However, the regulation of NtrC during nitrogen metabolism in P. stutzeri A1501 has not been clarified. In this work, a phenotypic analysis of the ntrC mutant characterized the roles of NtrC in nitrogen metabolism and the oxidative stress response of P. stutzeri A1501. To systematically identify NtrC-controlled gene expression, RNA-seq was performed to further analyse the gene expression differences between the wild-type strain and the ∆ntrC mutant under nitrogen fixation conditions. A total of 1431 genes were found to be significantly altered by ntrC deletion, among which 147 associative genes had NtrC-binding sites, and the pathways for nitrogen fixation regulation, nitrogenous compound acquisition and catabolism and nitrate assimilation were discussed. Furthermore, the oxidative stress-related gene (katB), which was upregulated by ntrC deletion, was suggested to be a potential target gene of NtrC, thus highlighting the importance of NtrC in nitrogenase protection against oxygen damage. Based on these findings, we propose that NtrC is a high-ranking element in the regulatory network of P. stutzeri A1501 that controls a variety of nitrogen metabolic and oxidative stress responsive traits required for adaptation to complex rhizosphere environments.


Assuntos
Nitrogênio/metabolismo , Pseudomonas stutzeri , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mutação , Fixação de Nitrogênio , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , RNA-Seq , Rizosfera
8.
NPJ Biofilms Microbiomes ; 7(1): 54, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210981

RESUMO

Biofilm and nitrogen fixation are two competitive strategies used by many plant-associated bacteria; however, the mechanisms underlying the formation of nitrogen-fixing biofilms remain largely unknown. Here, we examined the roles of multiple signalling systems in the regulation of biofilm formation by root-associated diazotrophic P. stutzeri A1501. Physiological analysis, construction of mutant strains and microscale thermophoresis experiments showed that RpoN is a regulatory hub coupling nitrogen fixation and biofilm formation by directly activating the transcription of pslA, a major gene involved in the synthesis of the Psl exopolysaccharide component of the biofilm matrix and nifA, the transcriptional activator of nif gene expression. Genetic complementation studies and determination of the copy number of transcripts by droplet digital PCR confirmed that the regulatory ncRNA RsmZ serves as a signal amplifier to trigger biofilm formation by sequestering the translational repressor protein RsmA away from pslA and sadC mRNAs, the latter of which encodes a diguanylate cyclase that synthesises c-di-GMP. Moreover, RpoS exerts a braking effect on biofilm formation by transcriptionally downregulating RsmZ expression, while RpoS expression is repressed posttranscriptionally by RsmA. These findings provide mechanistic insights into how the Rpo/Gac/Rsm regulatory networks fine-tune nitrogen-fixing biofilm formation in response to the availability of nutrients.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Fixação de Nitrogênio , Pseudomonas stutzeri/fisiologia , Proteínas de Bactérias/metabolismo , Ordem dos Genes , Nitrogenase/genética , Nitrogenase/metabolismo , Sequências Repetitivas de Ácido Nucleico , Ativação Transcricional
9.
Int J Syst Evol Microbiol ; 70(12): 6450-6457, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174834

RESUMO

A novel Gram-stain-positive, yellow, short-rod-shaped or coccoid bacterial strain, W204T, was isolated from a soil sample collected from Jiadengyu national forest park in China and characterized using a polyphasic approach. The cell-wall peptidoglycan contained ornithine as the diagnostic diamino acid. 16S rRNA gene sequence analysis indicated that strain W204T was closely related to Ornithinimicrobium flavum CPCC 203535T (97.4 %, similarity), Serinicoccus profundi CGMCC 4.5582T (96.9 %), Serinicoccus sediminis GP-T3-3T (96.8 %), Serinicoccus hydrothermalis JLT9T (96.7 %), Ornithinimicrobium cerasi CPCC 203383T (96.6 %) and Ornithinimicrobium kibberense K22-20T (96.6 %). However, the digital DNA-DNA genome hybridization value between strain W204T and the closest related strain O. flavum CPCC 203535T was 21.90 %. Complete genome analyses revealed that the size of the genome was 3.54 Mb and the genomic DNA G+C content was 70.79 mol%. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unidentified glycolipid, an unidentified phospholipid and an unidentified lipid. The major menaquinone was MK-8(H4). The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. The phenotypic, chemotaxonomic and phylogenetic data suggested that strain W204T should be classified as representative of a novel species of the genus Ornithinimicrobium, for which the name Ornithinimicrobium pratense sp. nov. is proposed. The type strain is W204T (=GDMCC 1.1391T=KCTC 49237T).


Assuntos
Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Pradaria , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Ornitina/química , Peptidoglicano/química , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Microorganisms ; 8(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936875

RESUMO

Members of the Microvirga genus are metabolically versatile and widely distributed in Nature. However, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. Herein, a novel thermo-tolerant bacterium named Microvirga thermotolerans HR1 was isolated and identified. Based on the 16S rRNA gene sequence analysis, the strain HR1 belonged to the genus Microvirga and was highly similar to Microvirga sp. 17 mud 1-3. The strain could grow at temperatures ranging from 15 to 50 °C with a growth optimum at 40 °C. It exhibited tolerance to pH range of 6.0-8.0 and salt concentrations up to 0.5% (w/v). It contained ubiquinone 10 as the predominant quinone and added group 8 as the main fatty acids. Analysis of 11 whole genomes of Microvirga species revealed that Microvirga segregated into two main distinct clades (soil and root nodule) as affected by the isolation source. Members of the soil clade had a high ratio of heat- or radiation-resistant genes, whereas members of the root nodule clade were characterized by a significantly higher abundance of genes involved in symbiotic nitrogen fixation or nodule formation. The taxonomic clustering of Microvirga strains indicated strong functional differentiation and niche-specific adaption.

11.
Syst Appl Microbiol ; 42(2): 248-260, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30477902

RESUMO

Plant growth promoting diazotrophs with the ability to associate with plant roots are in common use as inoculants to benefit crop yield and to mitigate chemical nitrogen fertilization. However, limited information is available in understanding to what extent the plant growth-promoting effect of the inoculum has on the plant's nitrogen acquisition as well as on the impact of inoculation on the indigenous rhizosphere microbial population. Here we reported on experiments that assessed how endophytic Pseudomonas stutzeri A1501 inoculated on maize improved plant growth and plant nitrogen content using a 15N dilution technique under two water regime conditions. The effects of inoculation and different water regimes were also assessed for the maize rhizospheric and surface soil communities by MiSeq community sequencing combined with qPCR of functional genes and transcripts (nifH and amoA) related to nitrogen cycling. Results support maize inoculated with P. stutzeri A1501 grew better and accumulated more nitrogen with a lower δ15N signature after 60 days than did plants inoculated with nifH-mutant and sterilized A1501 cells (non N2-fixing controls). Inoculant contribution to the plant was estimated to range from 0.30 to 0.82g N/plant, depending on water conditions. Inoculation with P. stutzeri A1501 significantly altered the composition of the diazotrophic community that P. stutzeri became dominant in the rhizosphere, and also increased the population of indigenous diazotrophs and ammonia oxidizers and functional genes transcripts. Redundancy analysis revealed that soil compartment and A1501 inoculation treatments were the main factors affecting the distribution of the diazotrophic community.


Assuntos
Pseudomonas stutzeri/fisiologia , Rizosfera , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , China , DNA Bacteriano/genética , Genes Bacterianos , Microbiota , Ciclo do Nitrogênio , Fixação de Nitrogênio , Isótopos de Nitrogênio/análise , Pseudomonas stutzeri/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Microb Ecol ; 70(4): 961-70, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26054702

RESUMO

Oxygen is considered as a limiting factor for nitrification in rice paddy soil. However, little is known about how the nitrifying microbial community responds to different oxygen concentrations at community and transcript level. In this study, soil and roots were harvested from 50-day-old rice microcosms and were incubated for up to 45 days under two oxygen concentrations: 2 % O(2) and 20 % O(2) (ambient air). Nitrification rates were measured from the accumulation of nitrite plus nitrate. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was determined from the abundance (using quantitative PCR (qPCR)) and composition (using terminal restriction fragment length polymorphism and cloning/sequencing) of their amoA genes, that of nitrite oxidizers (NOB) by quantifying the nxrA gene of Nitrobacter spp. and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by quantifying the copy numbers of amoA and nxrA transcripts (using RT-qPCR). Different oxygen concentrations did not affect the community compositions of AOB, AOA, and NOB, which however were different between surface soil, bottom soil, and rice roots. However, nitrification rates were higher under ambient air than 2 % O(2), and abundance and transcript activities of AOB, but not of AOA, were also higher. Abundance and transcript copy numbers of Nitrobacter were also higher at ambient air. These results indicate that AOB and NOB, but not AOA, were sensitive to oxygen availability.


Assuntos
Archaea/metabolismo , Nitrobacter/metabolismo , Oryza/microbiologia , Oxigênio/metabolismo , Microbiologia do Solo , Amônia/metabolismo , Archaea/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Concentração de Íons de Hidrogênio , Nitrificação , Nitritos/metabolismo , Nitrobacter/crescimento & desenvolvimento , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigênio/química , Filogenia , RNA Ribossômico 16S/genética , Solo/química
13.
Mol Biosyst ; 10(10): 2607-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25030084

RESUMO

Excess copper is toxic to organisms, and therefore, copper homeostasis is important for the limitation of its cellular levels. However, copper homeostasis has not been studied to date in the bacteria Deinococcus radiodurans R1, which exhibits extreme resistance to various environmental stresses. We have identified a copper-responsive gene cluster that encodes CopA, which is a copper-transporting P1-type ATPase, CopZ, which is a copper metallochaperone, and CsoR, which is a copper-sensing repressor. Copper induces the transcription of genes in this cluster. Mutants lacking copA exhibited reduced copper resistance and the overaccumulation of copper compared with the wild-type strain. Additionally, both in the absence and presence of copper, the copZ mutation increased the expression of copA and led to the accumulation of lower levels of copper compared with the wild type. The bioinformatic analysis showed that CsoR in D. radiodurans R1 shares high sequence similarity and identity with the CsoR of Mycobacterium tuberculosis and Bacillus subtilis. We also demonstrated through DNase I footprinting and electrophoretic mobility shift assays that CsoR binds to the promoter of the cluster and that copper ions eliminate this interaction. This implies that CsoR is the repressor of this cluster and that CopA, CopZ and CsoR participate in the regulation of copper homeostasis. Our data also indicate that after treatment with H2O2 and cumene hydroperoxide, the viability of the copA mutants was significantly reduced. This suggests that copper homeostasis plays an important role in oxidative resistance in D. radiodurans R1.


Assuntos
Cobre/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Família Multigênica , Estresse Oxidativo/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ordem dos Genes , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Alinhamento de Sequência , Ativação Transcricional
14.
FEMS Microbiol Ecol ; 87(1): 18-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23909555

RESUMO

Archaea in rice fields play an important role in carbon and nitrogen cycling. They comprise methane-producing Euryarchaeota as well as ammonia-oxidizing Thaumarchaeota, but their community structures and population dynamics have not yet been studied in the same system. Different soil compartments (surface, bulk, rhizospheric soil) and ages of roots (young and old roots) at two N fertilization levels and at three time points (the panicle initiation, heading and maturity periods) of the season were assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of archaeal genes (mcrA, amoA, 16S rRNA gene). The community of total Archaea in soil and root samples mainly consisted of the methanogens and the Thaumarchaeota and their abundance increased over the season. Methanogens proliferated everywhere, but Thaumarchaeota proliferated only on the roots and in response to nitrogen fertilization. The community structures of Archaea, methanogens and Thaumarchaeota were different in soil and root samples indicating niche differentiation. While Methanobacteriales were generally present, Methanosarcinaceae and Methanocellales were the dominant methanogens in soil and root samples, respectively. The results emphasize the specific colonization of roots by two ecophysiologically different groups of archaea which may belong to the core root biome.


Assuntos
Archaea/isolamento & purificação , Archaea/metabolismo , Metano/metabolismo , Oryza/microbiologia , Microbiologia do Solo , Archaea/classificação , Archaea/genética , DNA Arqueal/genética , Nitrogênio/metabolismo , Filogenia , Raízes de Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
15.
Appl Environ Microbiol ; 79(9): 3076-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23455342

RESUMO

Both bacteria and archaea potentially contribute to ammonia oxidation, but their roles in freshwater sediments are still poorly understood. Seasonal differences in the relative activities of these groups might exist, since cultivated archaeal ammonia oxidizers have higher temperature optima than their bacterial counterparts. In this study, sediment collected from eutrophic freshwater Lake Taihu (China) was incubated at different temperatures (4°C, 15°C, 25°C, and 37°C) for up to 8 weeks. We examined the active bacterial and archaeal ammonia oxidizers in these sediment microcosms by using combined stable isotope probing (SIP) and molecular community analysis. The results showed that accumulation of nitrate in microcosms correlated negatively with temperature, although ammonium depletion was the same, which might have been related to enhanced activity of other nitrogen transformation processes. Incubation at different temperatures significantly changed the microbial community composition, as revealed by 454 pyrosequencing targeting bacterial 16S rRNA genes. After 8 weeks of incubation, [(13)C]bicarbonate labeling of bacterial amoA genes, which encode the ammonia monooxygenase subunit A, and an observed increase in copy numbers indicated the activity of ammonia-oxidizing bacteria in all microcosms. Nitrosomonas sp. strain Is79A3 and Nitrosomonas communis lineages dominated the heavy fraction of CsCl gradients at low and high temperatures, respectively, indicating a niche differentiation of active bacterial ammonia oxidizers along the temperature gradient. The (13)C labeling of ammonia-oxidizing archaea in microcosms incubated at 4 to 25°C was minor. In contrast, significant (13)C labeling of Nitrososphaera-like archaea and changes in the abundance and composition of archaeal amoA genes were observed at 37°C, implicating autotrophic growth of ammonia-oxidizing archaea under warmer conditions.


Assuntos
Amônia/metabolismo , Archaea/crescimento & desenvolvimento , Processos Autotróficos , Bactérias/crescimento & desenvolvimento , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Proteínas Arqueais/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Sequência de Bases , China , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Água Doce , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Lagos/microbiologia , Dados de Sequência Molecular , Oxirredução , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
16.
Environ Microbiol ; 15(8): 2275-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23437806

RESUMO

The dynamics of populations and activities of ammonia-oxidizing and nitrite-oxidizing microorganisms were investigated in rice microcosms treated with two levels of nitrogen. Different soil compartments (surface, bulk, rhizospheric soil) and roots (young and old roots) were collected at three time points (the panicle initiation, heading and maturity periods) of the season. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of their amoA genes (coding for a subunit of ammonia monooxygenase), that of nitrite oxidizers (NOB) by quantifying the nxrA gene (coding for a subunit of nitrite oxidase of Nitrobacter spp.) and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by measuring the rates of potential ammonia oxidation and nitrite oxidation and by quantifying the copy numbers of amoA and nxrA transcripts. Potential nitrite oxidation activity was much higher than potential ammonia oxidation activity and was not directly affected by nitrogen amendment demonstrating the importance of ammonia oxidizers as pace makers for nitrite oxidizer populations. Marked differences in the distribution of bacterial and archaeal ammonia oxidizers, and of Nitrobacter-like and Nitrospira-like nitrite oxidizers were found in the different compartments of planted paddy soil indicating niche differentiation. In bulk soil, ammonia-oxidizing bacteria (Nitrosospira and Nitrosomonas) were at low abundance and displayed no activity, but in surface soil their activity and abundance was high. Nitrite oxidation in surface soil was dominated by Nitrospira spp. By contrast, ammonia-oxidizing Thaumarchaeota and Nitrobacter spp. seemed to dominate nitrification in rhizospheric soil and on rice roots. In contrast to soil compartment, the level of N fertilization and the time point of sampling had only little effect on the abundance, composition and activity of the nitrifying communities. The results of our study show that in rice fields population dynamics and activity of nitrifiers is mainly differentiated by the soil compartments rather than by nitrogen amendment or season.


Assuntos
Archaea/classificação , Archaea/fisiologia , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Microbiologia do Solo , Amônia/metabolismo , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Dosagem de Genes , Dados de Sequência Molecular , Nitrificação/genética , Nitritos/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , RNA Ribossômico 16S/genética
17.
FEMS Microbiol Ecol ; 80(1): 87-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22145990

RESUMO

Adaptation of microorganisms to the environment is a central theme in microbial ecology. The objective of this study was to investigate the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to a soil medium shift. We employed two rice field soils collected from Beijing and Hangzhou, China. These soils contained distinct AOB communities dominated by Nitrosomonas in Beijing rice soil and Nitrosospira in Hangzhou rice soil. Three mixtures were generated by mixing equal quantities of Beijing soil and Hangzhou soil (BH), Beijing soil with sterilized Hangzhou soil (BSH), and Hangzhou soil with sterilized Beijing soil (HSB). Pure and mixed soils were permanently flooded, and the surface-layer soil where ammonia oxidation occurred was collected to determine the response of AOB and AOA to the soil medium shift. AOB populations increased during the incubation, and the rates were initially faster in Beijing soil than in Hangzhou soil. Nitrosospira (cluster 3a) and Nitrosomonas (communis cluster) increased with time in correspondence with ammonia oxidation in the Hangzhou and Beijing soils, respectively. The 'BH' mixture exhibited a shift from Nitrosomonas at day 0 to Nitrosospira at days 21 and 60 when ammonia oxidation became most active. In 'HSB' and 'BSH' mixtures, Nitrosospira showed greater stimulation than Nitrosomonas, both with and without N amendment. These results suggest that Nitrosospira spp. were better adapted to soil environment shifts than Nitrosomonas. Analysis of the AOA community revealed that the composition of AOA community was not responsive to the soil environment shifts or to nitrogen amendment.


Assuntos
Adaptação Fisiológica , Amônia/metabolismo , Archaea/fisiologia , Bactérias/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Agricultura , Amônia/análise , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Sequência de Bases , China , Dados de Sequência Molecular , Nitrogênio/análise , Nitrogênio/metabolismo , Oryza , Oxirredução , Filogenia , Solo/química , Poluentes do Solo/análise
18.
Microb Ecol ; 58(4): 819-26, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19562245

RESUMO

Methanogenesis in paddy fields is significantly influenced by environmental and field management factors such as rice cultivar and nitrogenous fertilizer. However, it has been unclear whether such effects are reflected in the structure of methanogenic archaeal populations. In the present study, molecular analyses including cloning and sequencing and terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of archaeal 16S rRNA genes were used to characterize the methanogenic archaeal assemblages and to identify the effect of environmental variables including rice cultivar and N fertilizer on archaeal community compositions in a Chinese paddy field soil. The correlation between methanogenic archaeal composition and environmental variables was explored by correspondence analysis. The results showed that the spatial or niche factor (rice roots versus rhizosphere, surface, and the deeper layer soils) had the greatest influence on the archaeal community composition. There was an obvious enrichment or selection of hydrogenotrophic as opposed to acetoclastic methanogens by rice roots. The archaeal community also changed, though slightly, between the rhizosphere and bulk soils and between the surface soil and the deeper layer soil. However, rice cultivar and N fertilizer appear to have an effect only on methanogens tightly associated with rice roots.


Assuntos
Archaea/genética , Ecossistema , Fertilizantes/microbiologia , Nitrogênio/metabolismo , Oryza/microbiologia , Microbiologia do Solo , Archaea/classificação , Archaea/metabolismo , Impressões Digitais de DNA , DNA Arqueal/genética , Análise Multivariada , Filogenia , Raízes de Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
19.
Syst Appl Microbiol ; 32(1): 27-36, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19091507

RESUMO

Little information is available on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in flooded rice soils. Consequently, a microcosm experiment was conducted to determine the effect of nitrogen fertilizer on the composition of AOB and AOA communities in rice soil by using molecular analyses of ammonia monooxygenase gene (amoA) fragments. Experimental treatments included three levels of N (urea) fertilizer, i.e. 50, 100 and 150 mgNkg(-1) soil. Soil samples were operationally divided into four fractions: surface soil, bulk soil deep layer, rhizosphere and washed root material. NH(4)(+)-N was the dominant form of N in soil porewater and increased with N fertilization. Cloning and sequencing of amoA gene fragments showed that the AOB community in the rice soil consisted of three major groups, i.e. Nitrosomonas communis cluster, Nitrosospira cluster 3a and cluster 3b. The sequences related to Nitrosomonas were predominant. There was a clear effect of N fertilizer and soil depth on AOB community composition based on terminal restriction fragment length polymorphism fingerprinting. Nitrosomonas appeared to be more abundant in the potentially oxic or micro-oxic fractions, including surface soil, rhizosphere and washed root material, than the deep layer of anoxic bulk soil. Furthermore, Nitrosomonas increased relatively in the partially oxic fractions and that of Nitrosospira decreased with the increasing application of N fertilizer. However, AOA community composition remained unchanged according to the denaturing gradient gel electrophoresis analyses.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Fertilizantes , Oryza/crescimento & desenvolvimento , Oxirredutases/genética , Microbiologia do Solo , Ureia/farmacologia , Amônia/metabolismo , Archaea/classificação , Archaea/enzimologia , Archaea/genética , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Eletroforese/métodos , Dados de Sequência Molecular , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Nitrosomonadaceae/enzimologia , Nitrosomonadaceae/genética , Nitrosomonadaceae/isolamento & purificação , Nitrosomonas/enzimologia , Nitrosomonas/genética , Nitrosomonas/isolamento & purificação , Oxirredução , Oxirredutases/metabolismo , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...