Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 85: 548-556, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803610

RESUMO

Understanding the occurrence states of persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge is the key to their further treatment and disposal. Here, the effects of inorganic salts (silicate, sulfate, phosphate, hydroxide, and iron salts) that were typically rich in textile dyeing sludge on PAH adsorption by sludge and PAH degradation by an ultrasound (US) combined zero-valent iron/EDTA/Air (ZEA) system were studied in a simulated sludge system. The results showed that the simulated sludge containing inorganic salts had a larger specific surface area, which was beneficial for the adsorption of PAHs. More low-ring PAHs were adsorbed on the surface of the particles in the simulated sludge because of the inorganic salts, which was conducive to low-ring PAHs degradation by US/ZEA. The PAH removal rates were increased by 15.37% and 11.19%, respectively, in the presence of SiO32- and HPO42-. The yield of hydroxyl radicals (OH) was increased by 42.39% and 66.25% by SiO32- and HPO42-, respectively. The reason was that the oxidation of the ligand ([FeⅡ(EDTA)]) formed by ethylenediaminetetraacetic acid (EDTA) and divalent iron was promoted by SiO32- and HPO42-. The formation of OH in the US/ZEA system was inhibited by the corrosion inhibition of SO42- on zero-valent iron (ZVI), the reaction of ferric salt with EDTA, and the reaction of Mg(OH)2 with the ligand ([FeIII(EDTA)]). This work provides an essential theoretical insight into the role of the inorganic components of sludge in the removal of PAHs by advanced oxidation processes.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Esgotos , Ácido Edético , Ferro , Sais
2.
J Hazard Mater ; 343: 191-199, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28950207

RESUMO

In this work, the impact of organic matter on the degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge by ultrasound-Fenton process has been studied. Sludge organic matter (SOM) was characterized and the degradation efficiencies of PAHs at various oxidation intensities (Fenton's reagent of 20, 70, and 140mmol/L, ultrasonic densities of 0.36, 0.90, and 1.80W/cm3, and reaction time of 15, 25, and 40min) were determined. The results showed that 75.52-84.40% of PAHs and 16.32-31.13% of SOM had degraded after ultrasound-Fenton treatment, confirming the competitive relation between both of them for degradation. The aliphatic SOM fractions were preferentially oxidized owing to their easily degradable properties, while equimolar amounts of the aromatic moieties would require more oxidant compared to the aliphatic fractions. Correlation analysis demonstrated that SOM with its lower content, stronger polarity, and a higher proportion of labile organic fraction was more favourable for PAHs degradation. In addition, the SOM fractions were decomposed to biodegradable matter after treatment, which further enhance the biodegradability of sludge. This study provides insights into the role of SOM in PAHs removal by AOPs, and confirms that the ultrasound-Fenton treatment could not only effectively degrade PAHs, but also modify SOM.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Hidrocarbonetos Policíclicos Aromáticos/química , Ondas Ultrassônicas , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Corantes , Resíduos Industriais , Esgotos , Têxteis
3.
J Hazard Mater ; 307: 7-16, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26795704

RESUMO

To establish an efficient oxidation process for the degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge, the effects of various operating parameters were optimized during the ultrasound process, Fenton process and the combined ultrasound-Fenton process. The results showed that the ultrasonic density of 1.80w/cm(3), both H2O2 and Fe(2+) dosages of 140mmol/L and pH 3 were favorable conditions for the degradation of PAHs. The degradation efficiency of high molecular weight PAHs was close to or even higher than that of light molecular weight PAHs. The highest degradation efficiencies of Σ16 PAHs were obtained within 30min in the order of: Fenton (83.5%) >ultrasound-Fenton (75.5%) >ultrasound (45.5%), then the efficiencies were decreased in the other of: ultrasound-Fenton (73.0%) >Fenton (70.3%) >ultrasound (41.4%) in 60min. The extra PAHs were released from the intracellular substances and the cavities of sludge due to the disruption of sludge during the oxidation process. Also, the degradation of PAHs could be inhibited by the other organic matter in the sludge. The combined ultrasound-Fenton process showed more efficient than both ultrasound process and Fenton process not only in the surface of sludge but also in the sludge interior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...