Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269370

RESUMO

Strain modulation based on the heterogeneous design of soft substrates is an effective method to improve the sensitivity of stretchable resistive strain sensors. In this study, a novel design for reconfigurable strain modulation in the soft substrate with two-phase liquid cells is proposed. The modulatory strain distribution induced by the reversible phase transition of the liquid metal provides reconfigurable strain sensing capabilities with multiple combinations of operating range and sensitivity. The effectiveness of our strategy is validated by theoretical simulations and experiments on a hybrid carbonous film-based resistive strain sensor. The strain sensor can be gradually switched between a highly sensitive one and a wide-range one by selectively controlling the phases of liquid metal in the cell array with a external heating source. The relative change of sensitivity and operating range reaches a maximum of 59% and 44%, respectively. This reversible heterogeneous design shows great potential to facilitate the fabrication of strain sensors and might play a promising role in the future applications of stretchable strain sensors.

2.
Lab Chip ; 22(8): 1630-1639, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35348159

RESUMO

Electromechanical coupling plays a key role in determining the performance of stretchable strain sensor. Current regulation of the electromechanical coupling in stretchable strain sensor is largely restricted by the intrinsic mechanical properties of the device. In this study, a microfluidic strain sensor based on the core-shell package design with the auxetic metamaterial (AM) is presented. By overriding the mechanical properties of the device, the AM in the package effectively tunes the deformation of the microfluidic channel with the applied strain and configures the directional strain sensitivity with a large modulation range. The gauge factor (GF) of the strain sensor in the radial direction of the channel can be gradually shifted from the intrinsically negative value to a positive one by adopting the AMs with different designs. By simply replacing the AM in the package, the microfluidic strain sensor with the core-shell package can be configurated as an omnidirectional or directional stretchable strain sensor. With the directional sensitivity brought by the rational AM design, the application of the AM-integrated strain sensor in the skin-mounted tactile detection is demonstrated with high tolerance to unintended wrist movements.


Assuntos
Microfluídica , Pele
3.
ACS Appl Mater Interfaces ; 13(13): 15755-15760, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755438

RESUMO

Tunability of facilitation in short-term memory (STM) provides great potential in bioinspired computing. Recently, several doping strategies were proposed to modify the intrinsic features of materials, resulting in the optimization of the facilitation index (FI). However, real-time scale tuning, which is implemented on the same synaptic device, has not yet been demonstrated. Inspired by the chemical-electrical mixed synapse structure in the brain, we propose a three-terminal artificial synapse based on an ion-gated MoS2 memristor. The gate terminal serves as a nonvolatile ionic pump via chemical intercalation, which effectively affects both the conductance baseline and the hysteresis degree of the STM effect of the memristor. We further modeled the postsynaptic current (PSC) behavior and used it for reservoir computing. Simulation results show that, due to the real-time tuning ability, the built reservoir can be programmed for specific handwritten recognition tasks with the pruning of neurons from 784 to 50. The developed artificial mixed synapse is promising for a downsampling module in neural network design.

4.
ACS Appl Mater Interfaces ; 12(21): 24133-24140, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32369346

RESUMO

Birnessite-related manganese dioxides (MnO2) have recently been studied owing to their diverse low-dimensional layered structures and potential applications in energy devices. The birnessite MnO2 possesses a layered structure with edge-shared MnO6 octahedra layer stacked with interlayer of cations. The unique layered structure may provide some distinct electrical properties for the 2D layered nanosheets. In this work, layered K-birnessite MnO2 samples are synthesized by a hydrothermal method. The resistive switching (RS) devices based on single K-birnessite MnO2 nanosheets are fabricated by transferring the nanosheets onto SiO2/Si substrates through a facile and feasible method of mechanical exfoliation. The device exhibits nonvolatile memory switching (MS) behaviors with high current ON/OFF ratio of ∼2 × 105. And more importantly, reversible transformation between the nonvolatile MS and volatile threshold switching (TS) can be achieved in the single layered nanosheet through tuning the magnitude of compliance current (Icc). To be more specific, a relatively high Icc (1 mA) can trigger the nonvolatile MS behaviors, while a relatively low Icc (≤100 µA) can generate volatile TS characteristics. This work not only demonstrates the memristor based on single birnessite-related MnO2 nanosheet, but also offers an insight into understanding the complex resistive switching types and relevant physical mechanisms of the 2D layered oxide nanosheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...