Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 21(10): e2100122, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34292657

RESUMO

Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.


Assuntos
Bioimpressão , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
2.
Macromol Biosci ; 18(11): e1800155, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30256527

RESUMO

A known limitation of polymer micelles for the formulation of hydrophobic drugs is their low loading capacity (LC), which rarely exceeds 20 wt%. One general strategy to overcome this limitation is to increase the amphiphilic contrast, that is, to make the hydrophobic core of the micelles more hydrophobic. However, in the case of poly(2-oxazoline) (POx)-based amphiphilic triblock copolymers, a minimal amphiphilic contrast was reported to be beneficial. Here, this subject is revisited in more detail using long hydrophobic side chains that are either linear (nonyl) or branched (3-ethylheptyl). Two different backbones within the hydrophobic block are investigated, in particular POx and poly(2-oxazine) (POzi), for the solubilization and co-solubilization of the two highly water insoluble compounds, curcumin and paclitaxel. Even though high loading capacities can be achieved for curcumin using POzi-based triblock copolymers, the solubilization capacity of all investigated polymers with longer side chains is significantly lower compared to POx and poly(2-oxazine)s with shorter side chains. Although the even lower LC for paclitaxel can be somehow improved by co-formulating curcumin, this study corroborates that in the case of POx and POzi-based polymer micelles, an increased amphiphilic contrast leads to less drug solubilization.


Assuntos
Curcumina , Fibroblastos/metabolismo , Oxazóis/química , Paclitaxel , Células Cultivadas , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Fibroblastos/citologia , Humanos , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...