Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 43(3): 113831, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38401121

RESUMO

Cancer immunotherapies have demonstrated remarkable success; however, the majority of patients do not respond or develop resistance. Here, we conduct epigenetic gene-targeted CRISPR-Cas9 screens to identify epigenomic factors that limit CD8+ T cell-mediated anti-tumor immunity. We identify that PRMT1 suppresses interferon gamma (Ifnγ)-induced MHC-I expression, thus dampening CD8+ T cell-mediated killing. Indeed, PRMT1 knockout or pharmacological targeting of type I PRMT with the clinical inhibitor GSK3368715 enhances Ifnγ-induced MHC-I expression through elevated STAT1 expression and activation, while re-introduction of PRMT1 in PRMT1-deficient cells reverses this effect. Importantly, loss of PRMT1 enhances the efficacy of anti-PD-1 immunotherapy, and The Cancer Genome Atlas analysis reveals that PRMT1 expression in human melanoma is inversely correlated with expression of human leukocyte antigen molecules, infiltration of CD8+ T cells, and overall survival. Taken together, we identify PRMT1 as a negative regulator of anti-tumor immunity, unveiling clinical type I PRMT inhibitors as immunotherapeutic agents or as adjuncts to existing immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Humanos , Linfócitos T CD8-Positivos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunidade Celular , Interferon gama/metabolismo , Melanoma/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
FEBS J ; 291(7): 1386-1399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37971319

RESUMO

Despite the clinical success of cancer immunotherapies including immune checkpoint blockade and adoptive cellular therapies across a variety of cancer types, many patients do not respond or ultimately relapse; however, the molecular underpinnings of this are not fully understood. Thus, a system-level understating of the routes to tumor immune evasion is required to inform the design of the next generation of immunotherapy approaches. CRISPR screening approaches have proved extremely powerful in identifying genes that promote tumor immune evasion or sensitize tumor cells to destruction by the immune system. These large-scale efforts have brought to light decades worth of fundamental immunology and have uncovered the key immune-evasion pathways subverted in cancers in an acquired manner in patients receiving immune-modulatory therapies. The comprehensive discovery of the main pathways involved in immune evasion has spurred the development and application of novel immune therapies to target this process. Although successful, conventional CRISPR screening approaches are hampered by a number of limitations, which obfuscate a complete understanding of the precise molecular regulation of immune evasion in cancer. Here, we provide a perspective on screening approaches to interrogate tumor-lymphocyte interactions and their limitations, and discuss further development of technologies to improve such approaches and discovery capability.


Assuntos
Neoplasias , Evasão Tumoral , Humanos , Evasão Tumoral/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Previsões
4.
Proc Natl Acad Sci U S A ; 120(36): e2306414120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37643213

RESUMO

Targeted inhibitors of bromodomain and extraterminal (BET)-bromodomains and phosphatidylinositol-3-kinase (PI3K) signaling demonstrate potent but self-limited antilymphoma activity as single agents in the context of cellular Myelocytomatosis (cMYC) oncogene-dysregulation. However, combined PI3K and BET inhibition imparts synergistic anticancer activity with the potential for more sustained disease responses due to the mutual antagonism of compensatory epigenetic and signaling networks. Here, we describe the mechanistic and therapeutic validation of rationally designed dual PI3K/BET bromodomain inhibitors, built by linkage of established PI3K and BET inhibitor pharmacophores. The lead candidate demonstrates high selectivity, nanomolar range cellular potency, and compelling in vivo efficacy, including curative responses in the aggressive Eµ-Myc lymphoma model. These studies further support the therapeutic strategy of combined PI3K and BET inhibition and provide a potential step-change in approach to orthogonal MYC antagonism using optimized chimeric small-molecule technology.


Assuntos
Linfoma , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinase , Agressão , Epigenômica , Linfoma/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase
5.
Cell Rep ; 42(8): 113014, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37605534

RESUMO

CXCL9 expression is a strong predictor of response to immune checkpoint blockade therapy. Accordingly, we sought to develop therapeutic strategies to enhance the expression of CXCL9 and augment antitumor immunity. To perform whole-genome CRISPR-Cas9 screening for regulators of CXCL9 expression, a CXCL9-GFP reporter line is generated using a CRISPR knockin strategy. This approach finds that IRF1 limits CXCL9 expression in both tumor cells and primary myeloid cells through induction of SOCS1, which subsequently limits STAT1 signaling. Thus, we identify a subset of STAT1-dependent genes that do not require IRF1 for their transcription, including CXCL9. Targeting of either IRF1 or SOCS1 potently enhances CXCL9 expression by intratumoral macrophages, which is further enhanced in the context of immune checkpoint blockade therapy. We hence show a non-canonical role for IRF1 in limiting the expression of a subset of STAT1-dependent genes through induction of SOCS1.


Assuntos
Sistemas CRISPR-Cas , Inibidores de Checkpoint Imunológico , Retroalimentação , Proteínas Supressoras da Sinalização de Citocina/genética , Transdução de Sinais
6.
Sci Adv ; 8(37): eabm9427, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103522

RESUMO

The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, although the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limiting the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer.

7.
Front Immunol ; 13: 931630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874669

RESUMO

Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in Nkg7+/+ and Nkg7-/- littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity. Mechanistically, we found that deletion of NKG7 reduces the ability of CD8+ T cells to degranulate and kill target cells in vitro. However, as a result of inefficient cytotoxic activity, NKG7 deficient T cells form a prolonged immune synapse with tumor cells, resulting in increased secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF). By deleting the TNF receptor, TNFR1, from MC38-OVA tumors, we demonstrate that this hyper-secretion of TNF compensates for reduced synapse-mediated cytotoxic activity against MC38-OVA tumors in vivo, via increased TNF-mediated tumor cell death. Taken together, our results demonstrate that NKG7 enhances CD8+ T cell immune synapse efficiency, which may serve as a mechanism to accelerate direct cytotoxicity and limit potentially harmful inflammatory responses.


Assuntos
Linfócitos T CD8-Positivos , Sinapses Imunológicas , Proteínas de Membrana , Neoplasias , Animais , Imunoterapia/métodos , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/terapia , Fator de Necrose Tumoral alfa/metabolismo
8.
Clin Epigenetics ; 14(1): 96, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902886

RESUMO

BACKGROUND: Interferon gamma (IFNγ) is a pro-inflammatory cytokine that directly activates the JAK/STAT pathway. However, the temporal dynamics of chromatin remodeling and transcriptional activation initiated by IFNγ have not been systematically profiled in an unbiased manner. Herein, we integrated transcriptomic and epigenomic profiling to characterize the acute epigenetic changes induced by IFNγ stimulation in a murine breast cancer model. RESULTS: We identified de novo activation of cis-regulatory elements bound by Irf1 that were characterized by increased chromatin accessibility, differential usage of pro-inflammatory enhancers, and downstream recruitment of BET proteins and RNA polymerase II. To functionally validate this hierarchical model of IFNγ-driven transcription, we applied selective antagonists of histone acetyltransferases P300/CBP or acetyl-lysine readers of the BET family. This highlighted that histone acetylation is an antecedent event in IFNγ-driven transcription, whereby targeting of P300/CBP acetyltransferase activity but not BET inhibition could curtail the epigenetic remodeling induced by IFNγ through suppression of Irf1 transactivation. CONCLUSIONS: These data highlight the ability for epigenetic therapies to reprogram pro-inflammatory gene expression, which may have therapeutic implications for anti-tumor immunity and inflammatory diseases.


Assuntos
Neoplasias da Mama , Interferon gama , Acetilação , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Metilação de DNA , Proteína p300 Associada a E1A , Feminino , Interferon gama/farmacologia , Janus Quinases , Proteínas de Membrana , Camundongos , Fosfoproteínas , Fatores de Transcrição STAT , Transdução de Sinais
9.
Cancer Discov ; 12(6): 1560-1579, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35311997

RESUMO

Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC). In models of acute myeloid leukemia (AML), leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor (HDACi) panobinostat required activation of the type I interferon (IFN) pathway. Plasmacytoid dendritic cells (pDC) produced type I IFN after panobinostat treatment, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated induction of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, whereas combined treatment with panobinostat and IFNα improved outcomes in preclinical models. These discoveries offer a new therapeutic approach for AML and demonstrate that epigenetic rewiring of pDCs enhances antitumor immunity, opening the possibility of exploiting this approach for immunotherapies. SIGNIFICANCE: We demonstrate that HDACis induce terminal differentiation of AML through epigenetic remodeling of pDCs, resulting in production of type I IFN that is important for the therapeutic effects of HDACis. The study demonstrates the important functional interplay between the immune system and leukemias in response to HDAC inhibition. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
Leucemia Mieloide Aguda , Diferenciação Celular , Células Dendríticas , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Panobinostat/farmacologia
10.
Cancer Immunol Res ; 10(1): 87-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782346

RESUMO

Targeting chromatin binding proteins and modifying enzymes can concomitantly affect tumor cell proliferation and survival, as well as enhance antitumor immunity and augment cancer immunotherapies. By screening a small-molecule library of epigenetics-based therapeutics, BET (bromo- and extra-terminal domain) inhibitors (BETi) were identified as agents that sensitize tumor cells to the antitumor activity of CD8+ T cells. BETi modulated tumor cells to be sensitized to the cytotoxic effects of the proinflammatory cytokine TNF. By preventing the recruitment of BRD4 to p65-bound cis-regulatory elements, BETi suppressed the induction of inflammatory gene expression, including the key NF-κB target genes BIRC2 (cIAP1) and BIRC3 (cIAP2). Disruption of prosurvival NF-κB signaling by BETi led to unrestrained TNF-mediated activation of the extrinsic apoptotic cascade and tumor cell death. Administration of BETi in combination with T-cell bispecific antibodies (TCB) or immune-checkpoint blockade increased bystander killing of tumor cells and enhanced tumor growth inhibition in vivo in a TNF-dependent manner. This novel epigenetic mechanism of immunomodulation may guide future use of BETi as adjuvants for immune-oncology agents.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Proteínas Inibidoras de Apoptose/genética , Proteínas Nucleares/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Trends Immunol ; 42(12): 1128-1142, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34750058

RESUMO

Tumor necrosis factor (TNF) is a proinflammatory cytokine that is produced and secreted by cytotoxic lymphocytes upon tumor target recognition. Depending on the context, TNF can mediate either pro-survival or pro-death signals. The potential cytotoxicity of T cell-produced TNF, particularly in the context of T cell-directed immunotherapies, has been largely overlooked. However, a spate of recent studies investigating tumor immune evasion through the application of CRISPR-based gene-editing screens have highlighted TNF-mediated killing as an important component of the mammalian T cell antitumor repertoire. In the context of the current understanding of the role of TNF in antitumor immunity, we discuss these studies and touch on their therapeutic implications. Collectively, we provide an enticing prospect to augment immunotherapy responses through TNF cytotoxicity.


Assuntos
Imunoterapia , Neoplasias , Animais , Citotoxicidade Imunológica , Humanos , Imunoterapia/métodos , Mamíferos , Neoplasias/terapia , Linfócitos T , Evasão Tumoral , Fatores de Necrose Tumoral
12.
EMBO Rep ; 22(11): e53391, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34467615

RESUMO

The success of cancer immunotherapy is limited to a subset of patients, highlighting the need to identify the processes by which tumors evade immunity. Using CRISPR/Cas9 screening, we reveal that melanoma cells lacking HOIP, the catalytic subunit of LUBAC, are highly susceptible to both NK and CD8+ T-cell-mediated killing. We demonstrate that HOIP-deficient tumor cells exhibit increased sensitivity to the combined effect of the inflammatory cytokines, TNF and IFN-γ, released by NK and CD8+ T cells upon target recognition. Both genetic deletion and pharmacological inhibition of HOIP augment tumor cell sensitivity to combined TNF and IFN-γ. Together, we unveil a protective regulatory axis, involving HOIP, which limits a transcription-dependent form of cell death that engages both intrinsic and extrinsic apoptotic machinery upon exposure to TNF and IFN-γ. Our findings highlight HOIP inhibition as a potential strategy to harness and enhance the killing capacity of TNF and IFN-γ during immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Ubiquitina-Proteína Ligases , Apoptose/genética , Humanos , Interferon gama/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
13.
Nat Commun ; 12(1): 4746, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362900

RESUMO

The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.


Assuntos
Imunidade Celular , Células Matadoras Naturais/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Neoplasias/imunologia , Animais , Antineoplásicos , Linhagem Celular Tumoral , Citocinas , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Metástase Neoplásica , Neoplasias/patologia
14.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004147

RESUMO

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Fosfatase 2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Fosforilação , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Especificidade por Substrato
15.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34019788

RESUMO

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Assuntos
Biocatálise , Histonas/metabolismo , Oncogenes , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Linhagem Celular , Cromatina/metabolismo , Proteínas Correpressoras/metabolismo , Sequência Conservada , Evolução Molecular , Redes Reguladoras de Genes , Genoma , Histona Desacetilases/metabolismo , Humanos , Cinética , Metilação , Modelos Biológicos , RNA Polimerase II/metabolismo
16.
Cancer Discov ; 11(10): 2582-2601, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33990344

RESUMO

Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are an approved treatment for hormone receptor-positive breast cancer and are currently under evaluation across hundreds of clinical trials for other cancer types. The clinical success of these inhibitors is largely attributed to well-defined tumor-intrinsic cytostatic mechanisms, whereas their emerging role as immunomodulatory agents is less understood. Using integrated epigenomic, transcriptomic, and proteomic analyses, we demonstrated a novel action of CDK4/6 inhibitors in promoting the phenotypic and functional acquisition of immunologic T-cell memory. Short-term priming with a CDK4/6 inhibitor promoted long-term endogenous antitumor T-cell immunity in mice, enhanced the persistence and therapeutic efficacy of chimeric antigen receptor T cells, and induced a retinoblastoma-dependent T-cell phenotype supportive of favorable responses to immune checkpoint blockade in patients with melanoma. Together, these mechanistic insights significantly broaden the prospective utility of CDK4/6 inhibitors as clinical tools to boost antitumor T-cell immunity. SIGNIFICANCE: Immunologic memory is critical for sustained antitumor immunity. Our discovery that CDK4/6 inhibitors drive T-cell memory fate commitment sheds new light on their clinical activity, which is essential for the design of clinical trial protocols incorporating these agents, particularly in combination with immunotherapy, for the treatment of cancer.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Células T de Memória/efeitos dos fármacos , Camundongos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33608275

RESUMO

Multimodal single-cell RNA sequencing enables the precise mapping of transcriptional and phenotypic features of cellular differentiation states but does not allow for simultaneous integration of critical posttranslational modification data. Here, we describe SUrface-protein Glycan And RNA-seq (SUGAR-seq), a method that enables detection and analysis of N-linked glycosylation, extracellular epitopes, and the transcriptome at the single-cell level. Integrated SUGAR-seq and glycoproteome analysis identified tumor-infiltrating T cells with unique surface glycan properties that report their epigenetic and functional state.

18.
J Immunol ; 204(8): 2308-2315, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32152070

RESUMO

CRISPR/Cas9 technologies have revolutionized our understanding of gene function in complex biological settings, including T cell immunology. Current CRISPR-mediated gene editing strategies in T cells require in vitro stimulation or culture that can both preclude the study of unmanipulated naive T cells and alter subsequent differentiation. In this study, we demonstrate highly efficient gene editing within uncultured primary naive murine CD8+ T cells by electroporation of recombinant Cas9/sgRNA ribonucleoprotein immediately prior to in vivo adoptive transfer. Using this approach, we generated single and double gene knockout cells within multiple mouse infection models. Strikingly, gene deletion occurred even when the transferred cells were left in a naive state, suggesting that gene deletion occurs independent of T cell activation. Finally, we demonstrate that targeted mutations can be introduced into naive CD8+ T cells using CRISPR-based homology-directed repair. This protocol thus expands CRISPR-based gene editing approaches beyond models of robust T cell activation to encompass both naive T cell homeostasis and models of weak activation, such as tolerance and tumor models.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Animais , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Eletroporação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Polimorfismo de Nucleotídeo Único/imunologia
19.
Cells ; 9(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947615

RESUMO

One of the hallmarks of cancer cells is their ability to evade cell death via apoptosis. The inhibitor of apoptosis proteins (IAPs) are a family of proteins that act to promote cell survival. For this reason, upregulation of IAPs is associated with a number of cancer types as a mechanism of resistance to cell death and chemotherapy. As such, IAPs are considered a promising therapeutic target for cancer treatment, based on the role of IAPs in resistance to apoptosis, tumour progression and poor patient prognosis. The mitochondrial protein smac (second mitochondrial activator of caspases), is an endogenous inhibitor of IAPs, and several small molecule mimetics of smac (smac-mimetics) have been developed in order to antagonise IAPs in cancer cells and restore sensitivity to apoptotic stimuli. However, recent studies have revealed that smac-mimetics have broader effects than was first attributed. It is now understood that they are key regulators of innate immune signalling and have wide reaching immuno-modulatory properties. As such, they are ideal candidates for immunotherapy combinations. Pre-clinically, successful combination therapies incorporating smac-mimetics and oncolytic viruses, as with chimeric antigen receptor (CAR) T cell therapy, have been reported, and clinical trials incorporating smac-mimetics and immune checkpoint blockade are ongoing. Here, the potential of IAP antagonism to enhance immunotherapy strategies for the treatment of cancer will be discussed.


Assuntos
Fatores Imunológicos/farmacologia , Imunoterapia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Neoplasias/terapia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Humanos , Fatores Imunológicos/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Neoplasias/imunologia , Neoplasias/patologia
20.
EMBO J ; 39(2): e103637, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31803974

RESUMO

Although adoptive T-cell therapy has shown remarkable clinical efficacy in haematological malignancies, its success in combating solid tumours has been limited. Here, we report that PTPN2 deletion in T cells enhances cancer immunosurveillance and the efficacy of adoptively transferred tumour-specific T cells. T-cell-specific PTPN2 deficiency prevented tumours forming in aged mice heterozygous for the tumour suppressor p53. Adoptive transfer of PTPN2-deficient CD8+ T cells markedly repressed tumour formation in mice bearing mammary tumours. Moreover, PTPN2 deletion in T cells expressing a chimeric antigen receptor (CAR) specific for the oncoprotein HER-2 increased the activation of the Src family kinase LCK and cytokine-induced STAT-5 signalling, thereby enhancing both CAR T-cell activation and homing to CXCL9/10-expressing tumours to eradicate HER-2+ mammary tumours in vivo. Our findings define PTPN2 as a target for bolstering T-cell-mediated anti-tumour immunity and CAR T-cell therapy against solid tumours.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Neoplasias/terapia , Proteína Tirosina Fosfatase não Receptora Tipo 2/fisiologia , Receptor ErbB-2/fisiologia , Receptores de Antígenos de Linfócitos T/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...