Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 11(6): 1989-2005, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10848624

RESUMO

Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24-65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro. Yet, SFH proteins sharing low primary sequence similarity with Sec14p (i.e., Sfh2p, Sfh3p, Sfh4p, and Sfh5p) represent novel phosphatidylinositol transfer proteins (PITPs) that exhibit phosphatidylinositol- but not phosphatidylcholine-transfer activity in vitro. Moreover, increased expression of Sfh2p, Sfh4p, or Sfh5p rescues sec14-associated growth and secretory defects in a phospholipase D (PLD)-sensitive manner. Several independent lines of evidence further demonstrate that SFH PITPs are collectively required for efficient activation of PLD in vegetative cells. These include a collective requirement for SFH proteins in Sec14p-independent cell growth and in optimal activation of PLD in Sec14p-deficient cells. Consistent with these findings, Sfh2p colocalizes with PLD in endosomal compartments. The data indicate that SFH gene products cooperate with "bypass-Sec14p" mutations and PLD in a complex interaction through which yeast can adapt to loss of the essential function of Sec14p. These findings expand the physiological repertoire of PITP function in yeast and provide the first in vivo demonstration of a role for specific PITPs in stimulating activation of PLD.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana , Fosfatidilinositóis/metabolismo , Fosfolipase D/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Compartimento Celular , Divisão Celular , DNA Fúngico , Endossomos/metabolismo , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Dados de Sequência Molecular , Proteínas de Transferência de Fosfolipídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
2.
EMBO J ; 17(14): 4004-17, 1998 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-9670016

RESUMO

Phosphatidylinositol transfer proteins (PITPs) have been shown to play important roles in regulating a number of signal transduction pathways that couple to vesicle trafficking reactions, phosphoinositide-driven receptor-mediated signaling cascades, and development. While yeast and metazoan PITPs have been analyzed in some detail, plant PITPs remain entirely uncharacterized. We report the identification and characterization of two soybean proteins, Ssh1p and Ssh2p, whose structural genes were recovered on the basis of their abilities to rescue the viability of PITP-deficient Saccharomyces cerevisiae strains. We demonstrate that, while both Ssh1p and Ssh2p share approximately 25% primary sequence identity with yeast PITP, these proteins exhibit biochemical properties that diverge from those of the known PITPs. Ssh1p and Ssh2p represent high-affinity phosphoinositide binding proteins that are distinguished from each other both on the basis of their phospholipid binding specificities and by their substantially non-overlapping patterns of expression in the soybean plant. Finally, we show that Ssh1p is phosphorylated in response to various environmental stress conditions, including hyperosmotic stress. We suggest that Ssh1p may function as one component of a stress response pathway that serves to protect the adult plant from osmotic insult.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glycine max/genética , Proteínas de Membrana , Fosfatidilinositóis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Clonagem Molecular , Citosol/metabolismo , Genes de Plantas/genética , Dados de Sequência Molecular , Concentração Osmolar , Proteínas de Transferência de Fosfolipídeos , Fosforilação , Ligação Proteica , RNA Mensageiro/análise , RNA de Plantas/análise , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Cloreto de Sódio , Sorbitol , Glycine max/metabolismo
3.
Curr Opin Cell Biol ; 8(4): 534-41, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8791444

RESUMO

Genetic and biochemical approaches are shedding new light on the distinct physiological functions of specific phospholipid metabolic pathways and the mechanisms by which phospholipids are mobilized between intracellular compartments. In particular, phosphatidylinositol-transfer proteins have recently been revealed to play fascinating and unanticipated roles in the coordination of phospholipid metabolism with vesicle-trafficking and signal-transducing reactions.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae , Animais , Transporte Biológico/genética , Membranas/metabolismo , Modelos Biológicos , Proteínas de Transferência de Fosfolipídeos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...