Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 768: 144461, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33450688

RESUMO

Climate and socio-economic change impacts are likely to cross traditional sectoral and regional boundaries with cascading indirect, and potentially far-reaching, repercussions. This is particularly important for the food-water-land-ecosystems (FWLE) nexus, which is fundamental for the achievement of at least six of the seventeen Sustainable Development Goals (SDGs). A holistic understanding of the FWLE nexus interactions and how and to what extent various exogenous drivers of change affect them is therefore central to cross-sectoral adaptation planning. Here, we present such an integrated assessment for Europe applying a regional Integrated Assessment Platform (IAP). The study explores a wide range of future climate and socio-economic scenarios using more than 900 model simulations. The results show that food production is likely to be the main driver of Europe's future landscape change dynamics (with or without climate change). Agriculture and land use allocation is often driven by complex cross-sectoral interactions with cascading effects on other sectors such as forestry, biodiversity, and water under the various scenarios. The modelling also highlighted that while sustaining current levels of food production at the European level could be achievable under most climate and socio-economic scenarios, there are significant regional differences with winners and losers. The analysis raises the question of whether current production and consumption policies are sustainable in the long-term. Such systematic integrated model-based analysis plays a crucial role in informing development of cross-sectoral policies that maximise synergies and minimise trade-offs across nexus sectors, regions, and scenarios. This is essential to achieve the SDGs.

2.
Sci Total Environ ; 635: 659-672, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29680757

RESUMO

To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA1 project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision-making. The framework facilitates improved integrated assessments of the potential impacts and plausible adaptation policy choices (including migration) under uncertain future changing conditions. The concept, methods, and processes presented are transferable to other sub-national socio-ecological settings with multi-scale challenges.

3.
Sci Total Environ ; 633: 946-957, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29602126

RESUMO

Deltas are precarious environments experiencing significant biophysical, and socio-economic changes with the ebb and flow of seasons (including with floods and drought), with infrastructural developments (such as dikes and polders), with the movement of people, and as a result of climate and environmental variability and change. Decisions are being taken about the future of deltas and about the provision of adaptation investment to enable people and the environment to respond to the changing climate and related changes. The paper presents a framework to identify options for, and trade-offs between, long term adaptation strategies in deltas. Using a three step process, we: (1) identify current policy-led adaptations actions in deltas by conducting literature searches on current observable adaptations, potential transformational adaptations and government policy; (2) develop narratives of future adaptation policy directions that take into account investment cost of adaptation and the extent to which significant policy change/political effort is required; and (3) explore trade-offs that occur within each policy direction using a subjective weighting process developed during a collaborative expert workshop. We conclude that the process of developing policy directions for adaptation can assist policy makers in scoping the spectrum of options that exist, while enabling them to consider their own willingness to make significant policy changes within the delta and to initiate transformative change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...