Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39005310

RESUMO

A long-standing observation is that in fast-growing cells, respiration rate declines with increasing growth rate and is compensated by an increase in fermentation, despite respiration being more efficient than fermentation. This apparent preference for fermentation even in the presence of oxygen is known as aerobic glycolysis, and occurs in bacteria, yeast, and cancer cells. Considerable work has focused on understanding the potential benefits that might justify this seemingly wasteful metabolic strategy, but its mechanistic basis remains unclear. Here we show that aerobic glycolysis results from the saturation of mitochondrial respiration and the decoupling of mitochondrial biogenesis from the production of other cellular components. Respiration rate is insensitive to acute perturbations of cellular energetic demands or nutrient supplies, and is explained simply by the amount of mitochondria per cell. Mitochondria accumulate at a nearly constant rate across different growth conditions, resulting in mitochondrial amount being largely determined by cell division time. In contrast, glucose uptake rate is not saturated, and is accurately predicted by the abundances and affinities of glucose transporters. Combining these models of glucose uptake and respiration provides a quantitative, mechanistic explanation for aerobic glycolysis. The robustness of specific respiration rate and mitochondrial biogenesis, paired with the flexibility of other bioenergetic and biosynthetic fluxes, may play a broad role in shaping eukaryotic cell metabolism.

2.
Nat Cell Biol ; 26(3): 346-352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424273

RESUMO

Compartmentalization is an essential feature of eukaryotic life and is achieved both via membrane-bound organelles, such as mitochondria, and membrane-less biomolecular condensates, such as the nucleolus. Known biomolecular condensates typically exhibit liquid-like properties and are visualized by microscopy on the scale of ~1 µm (refs. 1,2). They have been studied mostly by microscopy, examining select individual proteins. So far, several dozen biomolecular condensates are known, serving a multitude of functions, for example, in the regulation of transcription3, RNA processing4 or signalling5,6, and their malfunction can cause diseases7,8. However, it remains unclear to what extent biomolecular condensates are utilized in cellular organization and at what length scale they typically form. Here we examine native cytoplasm from Xenopus egg extract on a global scale with quantitative proteomics, filtration, size exclusion and dilution experiments. These assays reveal that at least 18% of the proteome is organized into mesoscale biomolecular condensates at the scale of ~100 nm and appear to be stabilized by RNA or gelation. We confirmed mesoscale sizes via imaging below the diffraction limit by investigating protein permeation into porous substrates with defined pore sizes. Our results show that eukaryotic cytoplasm organizes extensively via biomolecular condensates, but at surprisingly short length scales.


Assuntos
Nucléolo Celular , Microscopia , Citoplasma , Mitocôndrias , Proteoma
3.
Nat Commun ; 13(1): 5887, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202846

RESUMO

The development of a fertilized egg to an embryo requires the proper temporal control of gene expression. During cell differentiation, timing is often controlled via cascades of transcription factors (TFs). However, in early development, transcription is often inactive, and many TF levels stay constant, suggesting that alternative mechanisms govern the observed rapid and ordered onset of gene expression. Here, we find that in early embryonic development access of maternally deposited nuclear proteins to the genome is temporally ordered via importin affinities, thereby timing the expression of downstream targets. We quantify changes in the nuclear proteome during early development and find that nuclear proteins, such as TFs and RNA polymerases, enter the nucleus sequentially. Moreover, we find that the timing of nuclear proteins' access to the genome corresponds to the timing of downstream gene activation. We show that the affinity of proteins to importin is a major determinant in the timing of protein entry into embryonic nuclei. Thus, we propose a mechanism by which embryos encode the timing of gene expression in early development via biochemical affinities. This process could be critical for embryos to organize themselves before deploying the regulatory cascades that control cell identities.


Assuntos
Núcleo Celular , Proteoma , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Feminino , Genoma , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Gravidez , Proteoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Cell ; 185(18): 3441-3456.e19, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055202

RESUMO

Great progress has been made in understanding gut microbiomes' products and their effects on health and disease. Less attention, however, has been given to the inputs that gut bacteria consume. Here, we quantitatively examine inputs and outputs of the mouse gut microbiome, using isotope tracing. The main input to microbial carbohydrate fermentation is dietary fiber and to branched-chain fatty acids and aromatic metabolites is dietary protein. In addition, circulating host lactate, 3-hydroxybutyrate, and urea (but not glucose or amino acids) feed the gut microbiome. To determine the nutrient preferences across bacteria, we traced into genus-specific bacterial protein sequences. We found systematic differences in nutrient use: most genera in the phylum Firmicutes prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host lactate. Such preferences correlate with microbiome composition changes in response to dietary modifications. Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the ingested nutrients.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Dieta , Fibras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Lactatos/metabolismo , Camundongos , Nutrientes
5.
Nat Commun ; 9(1): 1630, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691404

RESUMO

Arp2/3 complex-mediated actin assembly at cell membranes drives the formation of protrusions or endocytic vesicles. To identify the mechanism by which different membrane deformations can be achieved, we reconstitute the basic membrane deformation modes of inward and outward bending in a confined geometry by encapsulating a minimal set of cytoskeletal proteins into giant unilamellar vesicles. Formation of membrane protrusions is favoured at low capping protein (CP) concentrations, whereas the formation of negatively bent domains is promoted at high CP concentrations. Addition of non-muscle myosin II results in full fission events in the vesicle system. The different deformation modes are rationalized by simulations of the underlying transient nature of the reaction kinetics. The relevance of the regulatory mechanism is supported by CP overexpression in mouse melanoma B16-F1 cells and therefore demonstrates the importance of the quantitative understanding of microscopic kinetic balances to address the diverse functionality of the cytoskeleton.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Actinas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/química , Animais , Linhagem Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/metabolismo , Camundongos , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Polimerização , Coelhos , Suínos
6.
Nat Commun ; 7: 13120, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739426

RESUMO

Cells set up contractile actin arrays to drive various shape changes and to exert forces to their environment. To understand their assembly process, we present here a reconstituted contractile system, comprising F-actin and myosin II filaments, where we can control the local activation of myosin by light. By stimulating different symmetries, we show that the force balancing at the boundaries determine the shape changes as well as the dynamics of the global contraction. Spatially anisotropic attachment of initially isotropic networks leads to a self-organization of highly aligned contractile fibres, being reminiscent of the order formation in muscles or stress fibres. The observed shape changes and dynamics are fully recovered by a minimal physical model.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Actomiosina/fisiologia , Miosinas/fisiologia , Citoesqueleto de Actina/efeitos da radiação , Actinas/metabolismo , Actomiosina/metabolismo , Algoritmos , Animais , Géis , Luz , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miosinas/metabolismo , Coelhos
7.
Sci Adv ; 2(4): e1500465, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152328

RESUMO

Morphological transformations of living cells, such as shape adaptation to external stimuli, blebbing, invagination, or tethering, result from an intricate interplay between the plasma membrane and its underlying cytoskeleton, where molecular motors generate forces. Cellular complexity defies a clear identification of the competing processes that lead to such a rich phenomenology. In a synthetic biology approach, designing a cell-like model assembled from a minimal set of purified building blocks would allow the control of all relevant parameters. We reconstruct actomyosin vesicles in which the coupling of the cytoskeleton to the membrane, the topology of the cytoskeletal network, and the contractile activity can all be precisely controlled and tuned. We demonstrate that tension generation of an encapsulated active actomyosin network suffices for global shape transformation of cell-sized lipid vesicles, which are reminiscent of morphological adaptations in living cells. The observed polymorphism of our cell-like model, such as blebbing, tether extrusion, or faceted shapes, can be qualitatively explained by the protein concentration dependencies and a force balance, taking into account the membrane tension, the density of anchoring points between the membrane and the actin network, and the forces exerted by molecular motors in the actin network. The identification of the physical mechanisms for shape transformations of active cytoskeletal vesicles sets a conceptual and quantitative benchmark for the further exploration of the adaptation mechanisms of cells.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Citoesqueleto/química , Proteínas Motores Moleculares/química , Actinas/metabolismo , Actomiosina/química , Biomimética , Membrana Celular/química , Microtúbulos/química , Contração Muscular/fisiologia
8.
Science ; 345(6201): 1135-9, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25190790

RESUMO

Engineering synthetic materials that mimic the remarkable complexity of living organisms is a fundamental challenge in science and technology. We studied the spatiotemporal patterns that emerge when an active nematic film of microtubules and molecular motors is encapsulated within a shape-changing lipid vesicle. Unlike in equilibrium systems, where defects are largely static structures, in active nematics defects move spontaneously and can be described as self-propelled particles. The combination of activity, topological constraints, and vesicle deformability produces a myriad of dynamical states. We highlight two dynamical modes: a tunable periodic state that oscillates between two defect configurations, and shape-changing vesicles with streaming filopodia-like protrusions. These results demonstrate how biomimetic materials can be obtained when topological constraints are used to control the non-equilibrium dynamics of active matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...