Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6662): 1098-1104, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676942

RESUMO

Membranes with molecular-sized, high-density nanopores, which are stable under industrially relevant conditions, are needed to decrease energy consumption for separations. Interfacial polymerization has demonstrated its potential for large-scale production of organic membranes, such as polyamide desalination membranes. We report an analogous ultrafast interfacial process to generate inorganic, nanoporous carbon-doped metal oxide (CDTO) nanofilms for precise molecular separation. For a given pore size, these nanofilms have 2 to 10 times higher pore density (assuming the same tortuosity) than reported and commercial organic solvent nanofiltration membranes, yielding ultra-high solvent permeance, even if they are thicker. Owing to exceptional mechanical, chemical, and thermal stabilities, CDTO nanofilms with designable, rigid nanopores exhibited long-term stable and efficient organic separation under harsh conditions.

2.
Sci Rep ; 12(1): 10788, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750711

RESUMO

Incorporating molecular nanolayers (MNLs) at inorganic interfaces offers promise for reaping unusual enhancements in fracture energy, thermal and electrical transport. Here, we reveal that multilayering MNL-bonded inorganic interfaces can result in viscoelastic damping bandgaps. Molecular dynamics simulations of Au/octanedithiol MNL/Au multilayers reveal high-damping-loss frequency bands at 33 ≤ ν ≤ 77 GHz and 278 ≤ ν ≤ 833 GHz separated by a low-loss bandgap 77 ≤ ν ≤ 278 GHz region. The viscoelastic bandgap scales with the Au/MNL interface bonding strength and density, and MNL coverage. These results and the analyses of interfacial vibrations indicate that the viscoelastic bandgap is an interface effect that cannot be explained by weighted averages of bulk responses. These findings prognosticate a variety of possibilities for accessing and tuning novel dynamic mechanical responses in materials systems and devices with significant inorganic-organic interface fractions for many applications, e.g., smart composites and sensors with self-healing/-destructing mechanical responses.

3.
J Chem Phys ; 153(12): 124505, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33003718

RESUMO

Recently, molecular dynamics (MD) simulations were utilized to show that Schrage theory predicts evaporation/condensation mass fluxes with good accuracy in the case of monoatomic and non-polar molecular fluids. Here, we examine if they are equally accurate for molecular polar fluids, such as water. In particular, using molecular dynamics (MD) simulations, we study the steady state evaporation/condensation processes of water in a one-dimensional heat-pipe geometry to ascertain the validity of Schrage relationships. Non-equilibrium mass flow is driven by controlling the temperatures of the source/sink. Equilibrium simulations are utilized to evaluate the saturation properties and the mass accommodation coefficients as a function of temperature. Our results indicate that Schrage equations predict the evaporation/condensation rates of water with good accuracy. Moreover, we show that molecular velocity distributions in the vapor phase are indeed Maxwellian distributions shifted by the velocity of the macroscopic vapor flow, as assumed in Schrage's theoretical analysis.

4.
Sci Rep ; 9(1): 16607, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719647

RESUMO

We investigated the impact of high pressure and high-temperature annealing on lithium-vanadium-iron-phosphate (LiFe0.75V0.10PO4) glass materials, proposed for the use in cathodes for high-performance batteries. The treatment was carried out below the glass transition temperature (Tg ≈ 483 °C) at P = 1 GPa pressure, in an argon atmosphere. It led to the multifold electrical conductivity increase. Broadband dielectric spectroscopy (BDS) measurements before and after the process revealed the strong DC-conductivity increase across the whole studied frequency range by two orders of magnitude. The phenomenon is explained using Mott's theory of polaron hopping in disordered solids containing transition metal oxides. The pressure evolution of the glass transition temperature and the crystallisation temperature above Tg is shown.

5.
Appl Phys Rev ; 5(1)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30397419

RESUMO

We review the concept of stochasticity-i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes-in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by-or amplify-stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.

6.
J Phys Chem B ; 122(12): 3176-3183, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29505254

RESUMO

We present an efficient technique for the evaluation of the Gibbs adsorption of a liquid on a solid substrate. The behavior of a water nanodroplet on a silicon surface is simulated with molecular dynamics. An external field with varying strength is applied on the system to tune the solid-liquid interfacial contact area. A linear dependence of droplet's volume as a function of the contact area is observed. We introduce a modified Young-Laplace equation to explain the influence of the Gibbs adsorption on the nanodroplet volume contraction. Fitting of the molecular dynamics results with the analytical approach allows us to evaluate the number of atoms per unit area adsorbed on the substrate, which quantifies the Gibbs adsorption. Thus, a threshold of a droplet size is obtained, for which the impact of the adsorption is crucial. For instance, a water droplet with 5 nm radius has 3% of its molecules adsorbed on silicon substrate, while for droplets less than 1 nm this amount is more than 10%. The presented results could be beneficial for the evaluation of the adsorption impact on the physical-chemical properties of nanohybrid systems with large surface-to-volume ration.

7.
J Chem Phys ; 148(6): 064708, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29448775

RESUMO

Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ∼20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

8.
Adv Mater ; 28(40): 8975-8982, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27572096

RESUMO

With VO2 , a classic strongly correlated oxide material, a model semiconductor CdS is stretched and its electron-lattice interaction in a nonlinear manner is modulated. Optical spectroscopy is applied to probe the electronic band structure-associated parameters which is explained by the theoretical prediction based on k·p method and microscopy study. The research provides a new avenue on dynamic straining engineering.

9.
Phys Rev E ; 93(5): 053104, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300975

RESUMO

The extent to which the continuum treatment holds in binary droplet collisions is examined in the present work by using a continuum-based implicit surface capturing strategy (volume-of-fluid coupled to Navier-Stokes) and a molecular dynamics methodology. The droplet pairs are arranged in a head-on-collision configuration with an initial separation distance of 5.3 nm and a velocity of 3 ms^{-1}. The size of droplets ranges from 10-50 nm. Inspecting the results, the collision process can be described as consisting of two periods: a preimpact phase that ends with the initial contact of both droplets, and a postimpact phase characterized by the merging, deformation, and coalescence of the droplets. The largest difference between the continuum and molecular dynamics (MD) predictions is observed in the preimpact period, where the continuum-based viscous and pressure drag forces significantly overestimate the MD predictions. Due to large value of Knudsen number in the gas (Kn_{gas}=1.972), this behavior is expected. Besides the differences between continuum and MD, it is also observed that the continuum simulations do not converge for the set of grid sizes considered. This is shown to be directly related to the initial velocity profile and the minute size of the nanodroplets. For instance, for micrometer-size droplets, this numerical sensitivity is not an issue. During the postimpact period, both MD and continuum-based simulations are strikingly similar, with only a moderate difference in the peak kinetic energy recorded during the collision process. With values for the Knudsen number in the liquid (Kn_{liquid}=0.01 for D=36nm) much closer to the continuum regime, this behavior is expected. The 50 nm droplet case is sufficiently large to be predicted reasonably well with the continuum treatment. However, for droplets smaller than approximately 36 nm, the departure from continuum behavior becomes noticeably pronounced, and becomes drastically different for the 10 nm droplets.

10.
J Chem Phys ; 143(8): 084701, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328861

RESUMO

In this work, we study diffusion of gases in porous amorphous carbon at high temperatures using equilibrium molecular dynamics simulations. Microporous and mesoporous carbon structures are computationally generated using liquid quench method and reactive force fields. Motivated by the need to understand high temperature diffusivity of light weight gases like H2, O2, H2O, and CO in amorphous carbon, we investigate the diffusion behavior as function of two important parameters: (a) the pore size and (b) the concentration of diffusing gases. The effect of pore size on diffusion is studied by employing multiple realizations of the amorphous carbon structures in microporous and mesoporous regimes, corresponding to densities of 1 g/cm(3) and 0.5 g/cm(3), respectively. A detailed analysis of the effect of gas concentration on diffusion in the context of these two porosity regimes is presented. For the microporous structure, we observe that predominantly, a high diffusivity results when the structure is highly anisotropic and contains wide channels between the pores. On the other hand, when the structure is highly homogeneous, significant molecule-wall scattering leads to a nearly concentration-independent behavior of diffusion (reminiscent of Knudsen diffusion). The mesoporous regime is similar in behavior to the highly diffusive microporous carbon case in that diffusion at high concentration is governed by gas-gas collisions (reminiscent of Fickian diffusion), which transitions to a Knudsen-like diffusion at lower concentration.

11.
J Chem Phys ; 142(13): 134701, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854252

RESUMO

Using equilibrium and non-equilibrium molecular dynamics simulations, we study the flow of argon fluid above the critical temperature in a planar nanochannel delimited by graphene walls. We observe that, as a function of pressure, the slip length first decreases due to the decreasing mean free path of gas molecules, reaches the minimum value when the pressure is close to the critical pressure, and then increases with further increase in pressure. We demonstrate that the slip length increase at high pressures is due to the fact that the viscosity of fluid increases much faster with pressure than the friction coefficient between the fluid and the graphene. This behavior is clearly exhibited in the case of graphene due to a very smooth potential landscape originating from a very high atomic density of graphene planes. By contrast, on surfaces with lower atomic density, such as an (100) Au surface, the slip length for high fluid pressures is essentially zero, regardless of the nature of interaction between fluid and the solid wall.

12.
J Chem Phys ; 141(23): 234508, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25527949

RESUMO

We use molecular dynamics simulations to investigate the cavitation dynamics around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. Specifically, we study the temporal evolution of vapor nanobubbles that form around the solid nanoparticles heated over ps time scale and provide a detail description of the following vapor formation and collapse. For 8 nm diameter nanoparticles we observe the formation of vapor bubbles when the liquid temperature 0.5-1 nm away from the nanoparticle surface reaches ∼90% of the critical temperature, which is consistent with the onset of spinodal decomposition. The peak heat flux from the hot solid to the surrounding liquid at the bubble formation threshold is ∼20 times higher than the corresponding steady state critical heat flux. Detailed analysis of the bubble dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.

13.
Phys Rev Lett ; 113(6): 065901, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25148335

RESUMO

Using molecular dynamics simulations and a model AlN-GaN interface, we demonstrate that the interfacial thermal resistance R(K) (Kapitza resistance) between a substrate and thin film depends on the thickness of the film and the film surface roughness when the phonon mean free path is larger than film thickness. In particular, when the film (external) surface is atomistically smooth, phonons transmitted from the substrate can travel ballistically in the thin film, be scattered specularly at the surface, and return to the substrate without energy transfer. If the external surface scatters phonons diffusely, which is characteristic of rough surfaces, R(K) is independent of film thickness and is the same as R(K) that characterizes smooth surfaces in the limit of large film thickness. At interfaces where phonon transmission coefficients are low, the thickness dependence is greatly diminished regardless of the nature of surface scattering. The film thickness dependence of R(K) is analogous to the well-known fact of lateral thermal conductivity thickness dependence in thin films. The difference is that phonon-boundary scattering lowers the in-plane thermal transport in thin films, but it facilitates thermal transport from the substrate to the thin film.

14.
J Chem Phys ; 141(1): 014706, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25005302

RESUMO

Non-equilibrium molecular dynamics simulations are used to determine interfacial thermal resistance (Kapitza resistance) between a crystal and its melt for three materials including Ar, H2O, and C8H18 (octane). The simulation results show that the Kapitza resistance at a crystal-melt interface is very small and thus has a negligible effect on thermal transport across the crystal-melt interface. The underlying origins of this behavior are the very good vibrational property match between the two materials forming the interface and good interfacial bonding. The result also indicates that the commonly-used assumption that temperature profile is continuous at the crystal-melt interface is valid even in the case of very rapid crystal melting or growth.

15.
J Chem Phys ; 140(23): 234506, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24952551

RESUMO

We use non-equilibrium molecular dynamics simulations to study the heat transfer around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. We focus our studies on the role of the nanoparticle curvature on the liquid phase stability under steady-state heating. For small nanoparticles we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, for particles with radius smaller than a critical radius of 2 nm we do not observe formation of vapor even above the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain the stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy.

16.
Phys Rev Lett ; 111(22): 225701, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24329454

RESUMO

Using nonequilibrium molecular dynamics simulations, we subject bulk liquid to a very high-temperature gradient and observe a stable liquid phase with a local temperature well above the boiling point. Also, under this high-temperature gradient, the vapor phase exhibits condensation into a liquid at a temperature higher than the saturation temperature, indicating that the observed liquid stability is not caused by nucleation barrier kinetics. We show that, assuming local thermal equilibrium, the phase change can be understood from the thermodynamic analysis. The observed elevation of the boiling point is associated with the interplay between the "bulk" driving force for the phase change and surface tension of the liquid-vapor interface that suppresses the transformation. This phenomenon is analogous to that observed for liquids in confined geometries. In our study, however, a low-temperature liquid, rather than a solid, confines the high-temperature liquid.

17.
Artigo em Inglês | MEDLINE | ID: mdl-23496472

RESUMO

The thermal conductance at solid-gas interfaces with different interfacial bonding strengths is calculated through Green-Kubo equilibrium molecular dynamics (EMD) simulations. Due to the finite size of the simulation system, the long-time integral of the time correlation function of heat power across the solid-gas interface exhibits an exponential decay, which contains the information on interfacial thermal conductance. If an adsorbed gas layer is formed on the solid surface, it is found that the solid-gas interface needs to be defined at a plane outside the adsorbed layer so as to obtain the correct result from the Green-Kubo formula. The EMD simulation result agrees very well with that obtained from nonequilibrium molecular dynamics simulations. By calculating the average solid-gas interaction time as a function of solid-gas interaction strength, we find the incident gas atoms thermalize with the metal surface much more rapidly when the surface is covered by adsorbed gas molecules.


Assuntos
Transferência de Energia , Gases/química , Modelos Químicos , Modelos Estatísticos , Simulação de Dinâmica Molecular , Condutividade Térmica , Simulação por Computador , Propriedades de Superfície
18.
Nat Mater ; 12(2): 118-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23160269

RESUMO

Manipulating interfacial thermal transport is important for many technologies including nanoelectronics, solid-state lighting, energy generation and nanocomposites. Here, we demonstrate the use of a strongly bonding organic nanomolecular monolayer (NML) at model metal/dielectric interfaces to obtain up to a fourfold increase in the interfacial thermal conductance, to values as high as 430 MW m(-2) K(-1) in the copper-silica system. We also show that the approach of using an NML can be implemented to tune the interfacial thermal conductance in other materials systems. Molecular dynamics simulations indicate that the remarkable enhancement we observe is due to strong NML-dielectric and NML-metal bonds that facilitate efficient heat transfer through the NML. Our results underscore the importance of interfacial bond strength as a means to describe and control interfacial thermal transport in a variety of materials systems.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 2): 036313, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23031019

RESUMO

The kinetic properties of the pressure-driven Poiseuille flow in nanochannels with and without nanoparticles were studied with a nonequilibrium molecular dynamics simulation. To allow the fluid to dissipate heat, the boundary was kept at a constant temperature. Pure fluid simulations were taken as references and also used to study the fluid-wall interfacial interaction effects. The viscosity profiles of the fluid were calculated on the basis of velocity profiles and known applied shear stress. We present the relationship between the viscosity increase and particle loading. The role of channel wall-fluid wetting properties on the flow and viscosity was also investigated.


Assuntos
Coloides/química , Microfluídica/métodos , Modelos Químicos , Nanopartículas/química , Suspensões/química , Simulação por Computador , Viscosidade
20.
Phys Med Biol ; 57(18): 5765-75, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22948207

RESUMO

Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (∼ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ∼2 s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy.


Assuntos
Temperatura Alta , Raios Infravermelhos , Neoplasias/radioterapia , Radioterapia Assistida por Computador/métodos , Absorção , Terapia a Laser , Nanopartículas , Imagens de Fantasmas , Termografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...