Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Protein Sci ; 9(10): 1914-21, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11106164

RESUMO

Proteins often require cofactors to perform their biological functions and must fold in the presence of their cognate ligands. Using circular dichroism spectroscopy. we investigated the effects of divalent metal binding upon the folding pathway of Escherichia coli RNase HI. This enzyme binds divalent metal in its active site, which is proximal to the folding core of RNase HI as defined by hydrogen/deuterium exchange studies. Metal binding increases the apparent stability of native RNase HI chiefly by reducing the unfolding rate. As with the apo-form of the protein, refolding from high denaturant concentrations in the presence of Mg2+ follows three-state kinetics: formation of a rapid burst phase followed by measurable single exponential kinetics. Therefore, the overall folding pathway of RNase HI is minimally perturbed by the presence of metal ions. Our results indicate that the metal cofactor enters the active site pocket only after the enzyme reaches its native fold, and therefore, divalent metal binding stabilizes the protein by decreasing its unfolding rate. Furthermore, the binding of the cofactor is dependent upon a carboxylate critical for activity (Asp10). A mutation in this residue (D10A) alters the folding kinetics in the absence of metal ions such that they are similar to those observed for the unaltered enzyme in the presence of metal.


Assuntos
Escherichia coli/enzimologia , Dobramento de Proteína , Ribonucleases/química , Ribonucleases/metabolismo , Sítios de Ligação , Cátions Bivalentes/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Cinética , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Termodinâmica
3.
Chem Biol ; 7(3): R63-71, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10712935
4.
Science ; 287(5462): 2482-6, 2000 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-10741967

RESUMO

All cellular organisms use specialized RNA polymerases called "primases" to synthesize RNA primers for the initiation of DNA replication. The high-resolution crystal structure of a primase, comprising the catalytic core of the Escherichia coli DnaG protein, was determined. The core structure contains an active-site architecture that is unrelated to other DNA or RNA polymerase palm folds, but is instead related to the "toprim" fold. On the basis of the structure, it is likely that DnaG binds nucleic acid in a groove clustered with invariant residues and that DnaG is positioned within the replisome to accept single-stranded DNA directly from the replicative helicase.


Assuntos
DNA Primase/química , DNA Primase/metabolismo , DNA de Cadeia Simples/metabolismo , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Moldes Genéticos
5.
EMBO J ; 18(21): 6177-88, 1999 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-10545127

RESUMO

In all organisms, type II DNA topoisomerases are essential for untangling chromosomal DNA. We have determined the structure of the DNA-binding core of the Methanococcus jannaschii DNA topoisomerase VI A subunit at 2.0 A resolution. The overall structure of this subunit is unique, demonstrating that archaeal type II enzymes are distinct from other type II topoisomerases. However, the core structure contains a pair of domains that are also found in type IA and classic type II topoisomerases. Together, these regions may form the basis of a DNA cleavage mechanism shared among these enzymes. The core A subunit is a dimer that contains a deep groove that spans both protomers. The dimer architecture suggests that DNA is bound in the groove, across the A subunit interface, and that the two monomers separate during DNA transport. The A subunit of topoisomerase VI is homologous to the meiotic recombination factor, Spo11, and this structure can serve as a template for probing Spo11 function in eukaryotes.


Assuntos
DNA Topoisomerases Tipo II/química , Esterases/química , Mathanococcus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/química , Clonagem Molecular , Cristalografia por Raios X , DNA/metabolismo , Proteínas de Ligação a DNA/química , Dimerização , Endodesoxirribonucleases , Escherichia coli , Meiose , Modelos Moleculares , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Recombinação Genética
6.
Nat Struct Biol ; 6(10): 900-2, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10504717

RESUMO

DNA topoisomerases are proteins that regulate DNA topology in cells through selective cycles of DNA cleavage, manipulation, and religation. Two papers describe an ensemble of different protein conformations and nucleotide-protein complexes of Escherichia coli topoisomerase. These results lead to new insights about how this enzyme recognizes DNA and catalyzes supercoil relaxation.


Assuntos
DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Escherichia coli/enzimologia , Sítios de Ligação , Catálise , DNA/química , DNA Topoisomerases Tipo I/classificação , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
7.
J Mol Biol ; 289(2): 235-48, 1999 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-10366502

RESUMO

Saccharomyces cerevisiae Sgs1 protein is a member of the RecQ DNA helicase family which also includes the products of the human Bloom's syndrome and Werner's syndrome genes. We have studied the substrate specificity of a recombinant Sgs1 helicase (amino acid residues 400-1268 of the Sgs1 protein). Sgs1 shows a strong preference for binding branched DNA substrates, including duplex structures with a 3' single-stranded overhang and DNA junctions with multiple branches. Duplex DNA with a 5' rather than a 3' single-stranded tail is not recognized or unwound by Sgs1. DNase I and hydroxyl radical footprinting of the Sgs1-DNA complex shows that the protein binds specifically to the junction of a double-stranded DNA and its 3' overhang. Binding and unwinding of duplex DNA with a 3' overhang are much reduced if the backbone polarity of the 3' overhang is reversed in the junction region, but are unaffected if polarity reversal occurs four nucleotides away from the junction. These results indicate that the 3' to 5' polarity of unwinding by the recombinant Sgs1 protein is a direct consequence of the binding of the helicase to the single-stranded/double-stranded DNA junction and its recognition of the polarity of the single-stranded DNA at the junction. The recombinant Sgs1 also unwinds four-way junctions (synthetic Holliday junctions), a result that may be significant in terms of its role in suppressing DNA recombination in vivo.


Assuntos
DNA Helicases/metabolismo , DNA/química , DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Síndrome de Bloom/genética , Pegada de DNA , DNA Helicases/química , Humanos , Radical Hidroxila , Cinética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , RecQ Helicases , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae , Especificidade por Substrato , Síndrome de Werner/genética
8.
J Biol Chem ; 273(51): 34128-33, 1998 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-9852071

RESUMO

Ribonucleases H (RNases H) comprise a family of metal-dependent enzymes that catalyze the hydrolysis of the 3'-O---P bond of RNA in RNA.DNA hybrids. The mechanism by which RNases H use active-site metal(s) for catalysis is unclear. Based upon the seemingly contradictory structural observations of one divalent metal bound to Escherichia coli RNase HI and two divalent metals bound to the HIV RNase H domain, two models explaining RNase H metal dependence have been proposed: a one-metal mechanism and a two-metal mechanism. In this paper, we show that the Mn2+-dependent activity of E. coli RNase HI is not consistent with either of these mechanisms. RNase H activity in the presence of Mn2+ is complex, with activation and inhibition of the enzyme at low and high Mn2+ concentrations, respectively. Mutations at Asp-134 result in a partial loss of this inhibition, with little effect on activation. Neutralization of His-124 by mutation to Ala results in an enzyme with a significantly decreased specific activity and an absolute loss of Mn2+ inhibition. Inhibition by high Mn2+ concentrations is shown to be due to a reduction in kcat; this attenuation has a critical dependence on the presence of His-124. Based upon these results, we propose an "activation/attenuation" model explaining the metal dependence of RNase H activity where one metal is required for enzyme activation and binding of a second metal is inhibitory.


Assuntos
Escherichia coli/enzimologia , HIV-1/enzimologia , Manganês/farmacologia , Ribonuclease H/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , DNA/metabolismo , Ativação Enzimática , Histidina , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Hibridização de Ácido Nucleico , Conformação Proteica , RNA/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/química
9.
J Biol Chem ; 271(33): 19883-7, 1996 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-8702700

RESUMO

The RNase H family of enzymes catalyzes the hydrolysis of RNA from RNA DNA hybrids in a divalent metal-dependent fashion. To date, structure/function studies have focused on two members of this family: Escherichia coli RNase HI, a small monomeric protein; and human immunodeficiency virus, type I (HIV) RNase H, a domain of HIV reverse transcriptase. The isolated RNase H domain from HIV reverse transcriptase can be expressed independently and shares significant structural homology with its E. coli homologue; however, unlike the bacterial protein, it is inactive. The most notable difference between the inactive domain from HIV and the active E. coli protein is a basic helix/loop sequence, present in E. coli but absent from the HIV homologue. Substitution of this basic region into the HIV domain partially restores its activity and increases its thermodynamic stability. By deleting the basic helix/loop region, we have modeled the structural difference between these two polypeptides onto the E. coli homologue. Surprisingly, the resulting mutant protein is active in Mn2+-dependent fashion. Therefore, the basic helix/loop is not required for RNase H activity.


Assuntos
Escherichia coli/enzimologia , Ribonuclease H/química , Sequência de Aminoácidos , Cátions Bivalentes/metabolismo , HIV/enzimologia , Sequências Hélice-Alça-Hélice , Manganês/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Deleção de Sequência , Relação Estrutura-Atividade , Termodinâmica
10.
Proc Natl Acad Sci U S A ; 92(7): 2740-4, 1995 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-7535929

RESUMO

Human immunodeficiency virus (HIV) reverse transcriptase (RT) is a multifunctional protein, containing both DNA polymerase and RNase H activity. The RNase H activity of HIV RT catalyzes the hydrolysis of the RNA strand of RNA.DNA hybrids. While the domain that carries out the RNase H activity in HIV RT can be expressed as an independent, folded polypeptide, it is inactive as an RNase H. Here, we report the overexpression and purification of an active, recombinant HIV RNase H domain in which the sequence corresponding to the Escherichia coli RNase H1 basic helix/loop has been substituted for the corresponding sequence of HIV RNase H. The resulting polypeptide (RNH102) has Mn(2+)-dependent RNase H activity and is more stable than the independently expressed wild-type HIV RNase H domain.


Assuntos
HIV/enzimologia , Sequências Hélice-Alça-Hélice , Estrutura Secundária de Proteína , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/metabolismo , Ribonuclease H/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Clonagem Molecular , Escherichia coli/enzimologia , Cinética , Manganês/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , DNA Polimerase Dirigida por RNA/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribonuclease H/química , Ribonuclease H/isolamento & purificação , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...