Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2432, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105952

RESUMO

Understanding the cause of lithium dendrites formation and propagation is essential for developing practical all-solid-state batteries. Li dendrites are associated with mechanical stress accumulation and can cause cell failure at current densities below the threshold suggested by industry research (i.e., >5 mA/cm2). Here, we apply a MHz-pulse-current protocol to circumvent low-current cell failure for developing all-solid-state Li metal cells operating up to a current density of 6.5 mA/cm2. Additionally, we propose a mechanistic analysis of the experimental results to prove that lithium activity near solid-state electrolyte defect tips is critical for reliable cell cycling. It is demonstrated that when lithium is geometrically constrained and local current plating rates exceed the exchange current density, the electrolyte region close to the defect releases the accumulated elastic energy favouring fracturing. As the build-up of this critical activity requires a certain period, applying current pulses of shorter duration can thus improve the cycling performance of all-solid-solid-state lithium batteries.

2.
Sci Rep ; 9(1): 18027, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792305

RESUMO

The dependence of decomposition routes on intrinsic microstructure and stress in nanocrystalline transition metal nitrides is not yet fully understood. In this contribution, three Al0.7Cr0.3N thin films with residual stress magnitudes of -3510, -4660 and -5930 MPa in the as-deposited state were in-situ characterized in the range of 25-1100 °C using in-situ synchrotron high-temperature high-energy grazing-incidence-transmission X-ray diffraction and temperature evolutions of phases, coefficients of thermal expansion, structural defects, texture as well as residual, thermal and intrinsic stresses were evaluated. The multi-parameter experimental data indicate a complex intrinsic stress and phase changes governed by a microstructure recovery and phase transformations taking place above the deposition temperature. Though the decomposition temperatures of metastable cubic Al0.7Cr0.3N phase in the range of 698-914 °C are inversely proportional to the magnitudes of deposition temperatures, the decomposition process itself starts at the same stress level of ~-4300 MPa in all three films. This phenomenon indicates that the particular compressive stress level functions as an energy threshold at which the diffusion driven formation of hexagonal Al(Cr)N phase is initiated, provided sufficient temperature is applied. In summary, the unique synchrotron experimental setup indicated that residual stresses play a decisive role in the decomposition routes of nanocrystalline transition metal nitrides.

3.
J Appl Crystallogr ; 50(Pt 3): 901-908, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28656042

RESUMO

The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

4.
J Appl Crystallogr ; 49(Pt 6): 2217-2225, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980517

RESUMO

Because of the tremendous variability of crystallite sizes and shapes in nano-materials, it is challenging to assess the corresponding size-property relationships and to identify microstructures with particular physical properties or even optimized functions. This task is especially difficult for nanomaterials formed by self-organization, where the spontaneous evolution of microstructure and properties is coupled. In this work, two compositionally graded TiAlN films were (i) grown using chemical vapour deposition by applying a varying ratio of reacting gases and (ii) subsequently analysed using cross-sectional synchrotron X-ray nanodiffraction, electron microscopy and nanoindentation in order to evaluate the microstructure and hardness depth gradients. The results indicate the formation of self-organized hexagonal-cubic and cubic-cubic nanolamellae with varying compositions and thicknesses in the range of ∼3-15 nm across the film thicknesses, depending on the actual composition of the reactive gas mixtures. On the basis of the occurrence of the nanolamellae and their correlation with the local film hardness, progressively narrower ranges of the composition and hardness were refined in three steps. The third film was produced using an AlCl3/TiCl4 precursor ratio of ∼1.9, resulting in the formation of an optimized lamellar microstructure with ∼1.3 nm thick cubic Ti(Al)N and ∼12 nm thick cubic Al(Ti)N nanolamellae which exhibits a maximal hardness of ∼36 GPa and an indentation modulus of ∼522 GPa. The presented approach of an iterative nanoscale search based on the application of cross-sectional synchrotron X-ray nanodiffraction and cross-sectional nanoindentation allows one to refine the relationship between (i) varying deposition conditions, (ii) gradients of microstructure and (iii) gradients of mechanical properties in nanostructured materials prepared as thin films. This is done in a combinatorial way in order to screen a wide range of deposition conditions, while identifying those that result in the formation of a particular microstructure with optimized functional attributes.

5.
J Appl Crystallogr ; 49(Pt 1): 182-187, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26937239

RESUMO

Synchrotron X-ray nanodiffraction is used to analyse residual stress distributions in a 200 nm-thick W film deposited on the scalloped inner wall of a through-silicon via. The diffraction data are evaluated using a novel dedicated methodology which allows the quantification of axial and tangential stress components under the condition that radial stresses are negligible. The results reveal oscillatory axial stresses in the range of ∼445-885 MPa, with a distribution that correlates well with the scallop wavelength and morphology, as well as nearly constant tangential stresses of ∼800 MPa. The discrepancy with larger stress values obtained from a finite-element model, as well as from a blanket W film, is attributed to the morphology and microstructural nature of the W film in the via.

6.
Acta Mater ; 83: 276-284, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25642136

RESUMO

The complex structure of Ta2O5 led to the development of various structural models. Among them, superstructures represent the most stable configurations. However, their formation requires kinetic activity and long-range ordering processes, which are hardly present during physical vapor deposition. Based on nano-beam X-ray diffraction and concomitant ab initio studies, a new metastable orthorhombic basic structure is introduced for Ta2O5 with lattice parameters a = 6.425 Å, b = 3.769 Å and c = 7.706 Å. The unit cell containing only 14 atoms, i.e. two formula unit blocks in the c direction, is characterized by periodically alternating the occupied oxygen site between two possible positions in succeeding 002-planes. This structure can be described by the space group 53 (Pncm) with four Wyckoff positions, and exhibits an energy of formation of -3.209 eV atom-1. Among all the reported basic structures, its energy of formation is closest to those of superstructures. Furthermore, this model exhibits a 2.5 eV band gap, which is closer to experimental data than the band gap of any other basic-structure model. The sputtered Ta2O5 films develop only a superstructure if annealed at temperatures >800 °C in air or vacuum. Based on these results and the conveniently small unit cell size, it is proposed that the basic-structure model described here is an ideal candidate for both structure and electronic state descriptions of orthorhombic Ta2O5 materials.

7.
Rev Sci Instrum ; 85(11): 113901, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430118

RESUMO

µLaue diffraction with a polychromatic X-ray beam can be used to measure strain fields and crystal orientations of micro crystals. The hydrostatic strain tensor can be obtained once the energy profile of the reflections is measured. However, this remains a challenge both on the time scale and reproducibility of the beam position on the sample. In this review, we present a new approach to obtain the spatial and energy profiles of Laue spots by using a pn-junction charge-coupled device, an energy-dispersive area detector providing 3D resolution of incident X-rays. The morphology and energetic structure of various Bragg peaks from a single crystalline Cu micro-cantilever used as a test system were simultaneously acquired. The method facilitates the determination of the Laue spots' energy spectra without filtering the white X-ray beam. The synchrotron experiment was performed at the BM32 beamline of ESRF using polychromatic X-rays in the energy range between 5 and 25 keV and a beam size of 0.5 µm × 0.5 µm. The feasibility test on the well known system demonstrates the capabilities of the approach and introduces the "3D detector method" as a promising tool for material investigations to separate bending and strain for technical materials.

8.
J Phys Condens Matter ; 24(17): 175402, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22469705

RESUMO

A systematic ab initio molecular dynamics study was carried out to identify valence electron concentration and size induced changes on structure, elastic and magnetic properties for Co(43)Fe(20)Ta(5.5)X(31.5) (X=B, Si, P, S). Short range order, charge transfer and the bonding nature are analyzed by means of density of states, Bader decomposition and pair distribution function analysis. A clear trend of a decrease in density and bulk modulus as well as a weaker cohesion was observed as the valence electron concentration is increased by replacing B with Si and further with P and S. These changes may be understood based on increased interatomic distances, variations in coordination numbers and the electronic structure changes; as the valence electron concentration of X is increased the X bonding becomes more ionic, which disrupts the overall metallic interactions, leading to lower cohesion and stiffness. The highest magnetic moments for the transition metals are identified for X=S, despite the fact that the presence of X generally reduces the magnetic moment of Co. Furthermore, this study reveals an extended diagonal relationship between B and P within these amorphous alloys. Based on quantum mechanical data we identify composition induced changes in short range order, charge transfer and bonding nature and link them to density, elasticity and magnetism. The interplay between transition metal d band filling and s-d hybridization was identified to be a key materials design criterion.


Assuntos
Cobalto/química , Ferro/química , Fósforo/química , Física/métodos , Silício/química , Enxofre/química , Tantálio/química , Cristalização , Elasticidade , Vidro , Íons , Magnetismo , Teste de Materiais , Metais/química , Teoria Quântica , Espalhamento de Radiação
9.
Surf Coat Technol ; 206(22): 4502-4510, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23471140

RESUMO

The influence of a local thermal treatment on the properties of Ti-Al-N coatings is not understood. In the present work, a Ti0.52Al0.48N coating on a WC-Co substrate was heated with a diode laser up to 900 °C for 30 s and radially symmetric lateral gradients of phases, residual stress and hardness were characterized ex-situ using position-resolved synchrotron X-ray diffraction, Raman spectroscopy, transmission electron microscopy and nanoindentation. The results reveal (i) a residual stress relaxation at the edge of the irradiated area and (ii) a compressive stress increase of few GPa in the irradiated area center due to the Ti-Al-N decomposition, in particular due to the formation of small wurtzite (w) AlN domains. The coating hardness increased from 35 to 47 GPa towards the center of the heated spot. In the underlying heated substrate, a residual stress change from about - 200 to 500 MPa down to a depth of 6 µm is observed. Complementary, in-situ high-temperature X-ray diffraction analysis of stresses in a homogeneously heated Ti0.52Al0.48N coating on a WC-Co substrate was performed in the range of 25-1003 °C. The in-situ experiment revealed the origin of the observed thermally-activated residual stress oscillation across the laser heated spot. Finally, it is demonstrated that the coupling of laser heating to produce lateral thermal gradients and position-resolved experimental techniques opens the possibility to perform fast screening of structure-property relationships in complex materials.

10.
J Phys Condens Matter ; 23(47): 475401, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22056956

RESUMO

Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm(-3) for Co(43)Fe(20)Ta(5.5)B(31.5) and 8.42 g cm(-3) for Co(45.5)Fe(24)Ta(6)B(24.5), as well as the Young's moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness.

11.
Nanotechnology ; 21(38): 385702, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20739738

RESUMO

An in situ small-angle x-ray scattering study of the nanoparticle displacement in a self-assembled monolayer as a function of a supporting membrane strain is presented. The average nanoparticle spacing is 6.7 nm in the unstrained state and increases in the applied force direction, following linearly the membrane strain which reaches the maximum value of 11%. The experimental results suggest a continuous mutual shift of the nanoparticles and their gradual separation with the growing stress rather than nanoparticle islands formation. No measurable shift of the nanoparticles was observed in the direction perpendicular to the applied stress.

12.
J Nanosci Nanotechnol ; 9(6): 3606-10, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19504889

RESUMO

Morphology, structure and thermal behavior of magnetron sputtered TiN/Ag nanocomposite thin films deposited at 150 degrees C with an Ag content in the range of 7 to 45 at% were characterized. The films were thermally cycled and the relationship between Ag content, film structure and stress development is analyzed. The results indicate that the residual stresses in as-deposited films and the behavior during heating are determined by the film structure and the plastic deformation of the Ag phase. The increasing plastic deformation with increasing Ag content causes significant changes in the stress-temperature behavior. While films with low Ag content show a plateau in compressive stress from deposition temperature up to 280 degrees C followed by stress relaxation, films with higher Ag content exhibit a zero stress level from deposition temperature up to the maximum annealing temperature. During cooling, all films exhibit linear thermo-elastic behavior, where the slope of the stress-temperature curves also depends on the Ag content.

13.
J Appl Crystallogr ; 42(Pt 3): 416-428, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22477770

RESUMO

A new methodology is presented that allows the rapid determination of elastic constants of cubic fibre-textured thin films by X-ray diffraction. The theoretical concept is developed and tested on calculated examples of Cu and CrN films. The mechanical elastic constants are extrapolated from X-ray elastic constants by taking into consideration crystal and macroscopic elastic anisotropy. The derived algorithm enables the determination of a reflection and the corresponding value of the X-ray anisotropic factor Γ for which the X-ray elastic constants are equal to their mechanical counterparts in the case of fibre-textured cubic polycrystalline aggregates. The approach is independent of the crystal elastic anisotropy and depends on the fibre-texture type, the texture sharpness, the number of randomly oriented crystallites and the supposed grain-interaction model. In the experimental part, out-of-plane Young's moduli of 111 and 311 fibre-textured Cu and CrN thin films deposited on monocrystalline Si(100) substrates are determined. The moduli are extrapolated from thin-film experimental X-ray elastic constants that are determined by a combination of X-ray diffraction substrate curvature and sin(2)ψ methods. For the calculation, the film macroscopic elastic anisotropy (texture) is considered. The advantage of the new technique lies in the fact that experimental moduli are determined nondestructively, using a static diffraction experiment, and represent volume-averaged quantities.

14.
Rev Sci Instrum ; 78(3): 036103, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17411228

RESUMO

A new x-ray technique to determine temperature dependencies of macroscopic stresses in thin films by characterizing the substrate curvature is introduced. The technique is demonstrated on polycrystalline TiN and Al thin films deposited on Si(100) wafers. The structures are thermally cycled in the temperature range of 25-400 degrees C using a newly developed heating chamber attached to a commercial x-ray diffractometer. The curvature of the freestanding samples was determined by the rocking curve measurement of substrate Si 400 reflections at different lateral positions of the samples, and the stresses are calculated using Stoney's formula. The results show that the magnitude of the stress is in good agreement with the results obtained by other techniques. For the practical application of the technique, the sample mounting and the temperature control are of great importance.

15.
Philos Trans R Soc Lond B Biol Sci ; 357(1418): 191-7, 2002 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11911776

RESUMO

Collagen type I is the most abundant structural protein in tendon, skin and bone, and largely determines the mechanical behaviour of these connective tissues. To obtain a better understanding of the relationship between structure and mechanical properties, tensile tests and synchrotron X-ray scattering have been carried out simultaneously, correlating the mechanical behaviour with changes in the microstructure. Because intermolecular cross-links are thought to have a great influence on the mechanical behaviour of collagen, we also carried out experiments using cross-link-deficient tail-tendon collagen from rats fed with beta-APN, in addition to normal controls. The load-elongation curve of tendon collagen has a characteristic shape with, initially, an increasing slope, corresponding to an increasing stiffness, followed by yielding and then fracture. Cross-link-deficient collagen produces a quite different curve with a marked plateau appearing in some cases, where the length of the tendon increases at constant stress. With the use of in situ X-ray diffraction, it was possible to measure simultaneously the elongation of the collagen fibrils inside the tendon and of the tendon as a whole. The overall strain of the tendon was always larger than the strain in the individual fibrils, which demonstrates that some deformation is taking place in the matrix between fibrils. Moreover, the ratio of fibril strain to tendon strain was dependent on the applied strain rate. When the speed of deformation was increased, this ratio increased in normal collagen but generally decreased in cross-link-deficient collagen, correlating to the appearance of a plateau in the force-elongation curve indicating creep. We proposed a simple structural model, which describes the tendon at a hierarchical level, where fibrils and interfibrillar matrix act as coupled viscoelastic systems. All qualitative features of the strain-rate dependence of both normal and cross-link-deficient collagen can be reproduced within this model. This complements earlier models that considered the next smallest level of hierarchy, describing the deformation of collagen fibrils in terms of changes in their molecular packing.


Assuntos
Colágeno Tipo I/química , Síncrotrons , Tendões/química , Animais , Elasticidade , Modelos Moleculares , Conformação Proteica , Ratos , Estresse Mecânico , Cauda/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...