Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1615, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238354

RESUMO

Gene therapy presents an innovative approach to the treatment of previously incurable diseases. The advancement of research in the field of nanotechnology has the potential to overcome the current limitations and challenges of conventional therapy methods, and therefore to unlocking the full potential of dendrimers for use in the gene therapy of neurodegenerative disorders. The blood-brain barrier (BBB) poses a significant challenge when delivering therapeutic agents to the central nervous system. In this study, we investigated the biophysical properties of dendrimers and their complexes with siRNA directed against the apolipoprotein E (APOE) gene to identify an appropriate nanocarrier capable of safely delivering the cargo across the BBB. Our study yielded valuable insights into the complexation process, stability over time, the mechanisms of interaction, the influence of dendrimers on the oligonucleotide's spatial structure, and the potential cytotoxic effects on human cerebral microvascular endothelium cells. Based on our findings, we identified that the dendrimer G3Si PEG6000 was an optimal candidate for further research, potentially serving as a nanocarrier capable of safely delivering therapeutic agents across the BBB for the treatment of neurodegenerative disorders.


Assuntos
Dendrímeros , Doenças Neurodegenerativas , Humanos , RNA Interferente Pequeno/genética , Dendrímeros/química , Silanos/química
2.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047610

RESUMO

Drug delivery systems such as dendrimers, liposomes, polymers or gold/silver nanoparticles could be used to advance modern medicine. One significant pharmacological problem is crossing biological barriers by commonly used drugs, e.g., in the treatment of neurodegenerative diseases, which have a problem of the blood-brain barrier (BBB) restricting drug delivery. Numerous studies have been conducted to find appropriate drug carriers that are safe, biocompatible and efficient. In this work, we evaluate pegylated gold nanoparticles AuNP14a and AuNP14b after their conjugation with therapeutic siRNA directed against APOE4. This genetic risk factor remains the strongest predictor for late-onset Alzheimer's disease. The study aimed to assess the biophysical properties of AuNPs/siAPOE complexes and to check their biological safety on healthy cells using human brain endothelial cells (HBEC-5i). Techniques such as fluorescence polarization, circular dichroism, dynamic light scattering, ζ-potential measurements and gel retardation assay showed that AuNPs form stable complexes with siRNA. Subsequently, cytotoxicity assays proved the biological safety of formed conjugates. Obtained results enabled us to find effective concentrations of AuNPs when complexes are formed and non-toxic for healthy cells. One of the studied nanoparticles, AuNP14b complexed with siRNA, displayed lower cytotoxicity (MTT assay, cells viability -74.8 ± 3.1%) than free nanoparticles (44.7 ± 3.6%). This may be promising for further investigations in nucleic acid delivery and could have practical use in treating neurodegenerative diseases.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , RNA Interferente Pequeno/genética , Ouro , Células Endoteliais , Prata , Polietilenoglicóis
3.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628396

RESUMO

Micrometer-thicker, biologically responsive nanocomposite films were prepared starting from alginate-metal alkoxide colloidal solution followed by sol-gel chemistry and solvent removal through evaporation-induced assembly. The disclosed approach is straightforward and highly versatile, allowing the entrapment and growth of a set of glassy-like metal oxide within the network of alginate and their shaping as crake-free transparent and flexible films. Immersing these films in aqueous medium triggers alginate solubilization, and affords water-soluble metal oxides wrapped in a biocompatible carbohydrate framework. Biological activity of the nano-composites films was also studied including their hemolytic activity, methemoglobin, prothrombin, and thrombine time. The effect of the films on fibroblasts and keratinocytes of human skin was also investigated with a special emphasis on the role played by the incorporated metal oxide. This comparative study sheds light on the crucial biological response of the ceramic phase embedded inside of the films, with titanium dioxide being the most promising for wound healing purposes.


Assuntos
Alginatos , Nanoestruturas , Alginatos/farmacologia , Humanos , Óxidos/farmacologia , Água/farmacologia , Cicatrização
4.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768816

RESUMO

Marine polysaccharides are believed to be promising wound-dressing nanomaterials because of their biocompatibility, antibacterial and hemostatic activity, and ability to easily shape into transparent films, hydrogels, and porous foams that can provide a moist micro-environment and adsorb exudates. Current efforts are firmly focused on the preparation of novel polysaccharide-derived nanomaterials functionalized with chemical objects to meet the mechanical and biological requirements of ideal wound healing systems. In this contribution, we investigated the characteristics of six different cellulose-filled chitosan transparent films as potential factors that could help to accelerate wound healing. Both microcrystalline and nano-sized cellulose, as well as native and phosphorylated cellulose, were used as fillers to simultaneously elucidate the roles of size and functionalization. The assessment of their influences on hemostatic properties indicated that the tested nanocomposites shorten clotting times by affecting both the extrinsic and intrinsic pathways of the blood coagulation system. We also showed that all biocomposites have antioxidant capacity. Moreover, the cytotoxicity and genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. The nature of the cellulose used as a filler was found to influence their cytotoxicity at a relatively low level. Potential mechanisms of cytotoxicity were also investigated; only one (phosphorylated microcellulose-filled chitosan films) of the compounds tested produced reactive oxygen species (ROS) to a small extent, and some films reduced the level of ROS, probably due to their antioxidant properties. The transmembrane mitochondrial potential was very slightly lowered. These biocompatible films showed no genotoxicity, and very importantly for wound healing, most of them significantly accelerated migration of both fibroblasts and keratinocytes.


Assuntos
Celulose/química , Quitosana , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Nanocompostos/química , Linhagem Celular , Movimento Celular , Celulose/farmacologia , Fibroblastos/fisiologia , Humanos , Queratinócitos/fisiologia , Fosforilação , Cicatrização
5.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200955

RESUMO

Nanocarriers are delivery platforms of drugs, peptides, nucleic acids and other therapeutic molecules that are indicated for severe human diseases. Gliomas are the most frequent type of brain tumor, with glioblastoma being the most common and malignant type. The current state of glioma treatment requires innovative approaches that will lead to efficient and safe therapies. Advanced nanosystems and stimuli-responsive materials are available and well-studied technologies that may contribute to this effort. The present study deals with the development of functional chimeric nanocarriers composed of a phospholipid and a diblock copolymer, for the incorporation, delivery and pH-responsive release of the antiglioma agent TRAM-34 inside glioblastoma cells. Nanocarrier analysis included light scattering, protein incubation and electron microscopy, and fluorescence anisotropy and thermal analysis techniques were also applied. Biological assays were carried out in order to evaluate the nanocarrier nanotoxicity in vitro and in vivo, as well as to evaluate antiglioma activity. The nanosystems were able to successfully manifest functional properties under pH conditions, and their biocompatibility and cellular internalization were also evident. The chimeric nanoplatforms presented herein have shown promise for biomedical applications so far and should be further studied in terms of their ability to deliver TRAM-34 and other therapeutic molecules to glioblastoma cells.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Polímeros/química , Pirazóis/administração & dosagem , Apoptose , Proliferação de Células , Glioma/metabolismo , Glioma/patologia , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Nanopartículas/química , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072512

RESUMO

Synthetic materials commonly used in the packaging industry generate a considerable amount of waste each year. Chitosan is a promising feedstock for the production of functional biomaterials. From a biological point of view, chitosan is very attractive for food packaging. The purposes of this study were to evaluate the antibacterial activity of a set of chitosan-metal oxide films and different chitosan-modified graphene (oxide) films against two foodborne pathogens: Campylobacter jejuni ATCC 33560 and Listeria monocytogenes 19115. Moreover, we wanted to check whether the incorporation of antimicrobial constituents such as TiO2, ZnO, Fe2O3, Ag, and graphene oxide (GO) into the polymer matrices can improve the antibacterial properties of these nanocomposite films. Finally, this research helps elucidate the interactions of these materials with eukaryotic cells. All chitosan-metal oxide films and chitosan-modified graphene (oxide) films displayed improved antibacterial (C. jejuni ATCC 33560 and L. monocytogenes 19115) properties compared to native chitosan films. The CS-ZnO films had excellent antibacterial activity towards L. monocytogenes (90% growth inhibition). Moreover, graphene-based chitosan films caused high inhibition of both tested strains. Chitosan films with graphene (GO, GOP, GOP-HMDS, rGO, GO-HMDS, rGOP), titanium dioxide (CS-TiO2 20:1a, CS-TiO2 20:1b, CS-TiO2 2:1, CS-TiO2 1:1a, CS-TiO2 1:1b) and zinc oxide (CS-ZnO 20:1a, CS-ZnO 20:1b) may be considered as a safe, non-cytotoxic packaging materials in the future.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis , Quitosana , Microbiologia de Alimentos , Embalagem de Alimentos , Membranas Artificiais , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Quitosana/química , Metais/química , Polímeros
7.
Materials (Basel) ; 13(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102202

RESUMO

Graphene oxide (GO) has recently captured tremendous attention, but only few functionalized graphene derivatives were used as fillers, and insightful studies dealing with the thermal, mechanical, and biological effects of graphene surface functionalization are currently missing in the literature. Herein, reduced graphene oxide (rGO), phosphorylated graphene oxide (PGO), and trimethylsilylated graphene oxide (SiMe3GO) were prepared by the post-modification of GO. The electrostatic interactions of these fillers with chitosan afforded colloidal solutions that provide, after water evaporation, transparent and flexible chitosan-modified graphene films. All reinforced chitosan-graphene films displayed improved mechanical, thermal, and antibacterial (S. aureus, E. coli) properties compared to native chitosan films. Hemolysis, intracellular catalase activity, and hemoglobin oxidation were also observed for these materials. This study shows that graphene functionalization provides a handle for tuning the properties of graphene-reinforced nanocomposite films and customizing their functionalities.

8.
Neurotox Res ; 34(3): 613-626, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29951896

RESUMO

Pyrovalerone derivatives (α-pyrrolidinophenones) form a branch of synthetic cathinones, a second most prominent group of novel psychoactive substances. Although the toxicity of 3,4-MDPV, a progenitor of the α-pyrrolidinophenones, is well described, little is known of the potential cytotoxicity of the new members of this group entering the recreational drug market each year. The present study assesses the cytotoxicity of members of the α-pyrrolidinophenone group, i.e., α-PVP, its longer side-chain derivatives PV8 and PV9, and their 4-fluoro- and 4-methoxy-analogs, against model cell lines for the nervous system (SH-SY5Y), liver (Hep G2) and upper airway epithelium (RPMI 2650), and cardiomyocytes (H9C2(2-1)). Additionally, an impact of pyrovalerones on the fluidity of the plasma membrane, as the potential mechanism of their cytotoxicity, was examined. The longer side-chain α-pyrrolidinophenones and their fluoro- and methoxy-analogs produce more pronounced maximal cytotoxicity, with regard to mitochondrial activity and cell membrane integrity, than the five-carbon α-PVP and its substituted derivatives. The report demonstrates, for the first time, that changes of fluidity of the interior part of plasma membrane contribute to the cytotoxicity of pyrovalerone derivatives, in addition to the previously reported mechanisms. Taking into consideration our previous findings that PV8 and PV9 produce weaker psychostimulatory effects than α-PVP, the higher cytotoxicity of the new generation of pyrovalerones can pose a serious threat to abusers, as it is possible that longer-chain compounds may be taken in higher doses to obtain similar levels of stimulation.


Assuntos
Membrana Celular/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Propiofenonas/química , Propiofenonas/farmacologia , Psicotrópicos/química , Psicotrópicos/farmacologia , Pirrolidinas/química , Pirrolidinas/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Humanos , L-Lactato Desidrogenase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...