Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 209(Pt A): 1032-1047, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447266

RESUMO

Otolin-1 is a C1q family member and a major component of the organic matrix of fish otoliths and human otoconia. To date, the protein molecular properties have not been characterized. In this work, we describe biochemical characterization and comparative studies on saccular-specific otolin-1 derived from Danio rerio and Homo sapiens. Due to the low abundance of proteins in the otoconial matrix, we developed a production and purification method for both recombinant homologues of otolin-1. Danio rerio and Homo sapiens otolin-1 forms higher-order oligomers that can be partially disrupted under reducing conditions. The presence of Ca2+ stabilizes the oligomers and significantly increases the thermal stability of the proteins. Despite the high sequence coverage, the oligomerization of Danio rerio otolin-1 is more affected by the reducing conditions and presence of Ca2+ than the human homologue. The results show differences in molecular behaviour, which may be reflected in Danio rerio and Homo sapiens otolin-1 role in otolith and otoconia formation.


Assuntos
Proteínas da Matriz Extracelular , Peixe-Zebra , Animais , Cálcio , Proteínas da Matriz Extracelular/metabolismo , Humanos , Membrana dos Otólitos/química , Membrana dos Otólitos/metabolismo , Peixe-Zebra/metabolismo
2.
J Phys Chem B ; 125(42): 11606-11616, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34648705

RESUMO

Catalytic fields representing the topology of the optimal molecular environment charge distribution that reduces the activation barrier have been used to examine alternative reaction variants and to determine the role of conserved catalytic residues for two consecutive reactions catalyzed by the same enzyme. Until now, most experimental and conventional top-down theoretical studies employing QM/MM or ONIOM methods have focused on the role of enzyme electric fields acting on broken bonds of reactants. In contrast, our bottom-up approach dealing with a small reactant and transition-state model allows the analysis of the opposite effects: how the catalytic field resulting from the charge redistribution during the enzyme reaction acts on conserved amino acid residues and contributes to the reduction of the activation barrier. This approach has been applied to the family of histidyl tRNA synthetases involved in the translation of the genetic code into the protein amino acid sequence. Activation energy changes related to conserved charged amino acid residues for 12 histidyl tRNA synthetases from different biological species allowed to compare on equal footing the catalytic residues involved in ATP aminoacylation and tRNA charging reactions and to analyze different reaction mechanisms proposed in the literature. A scan of the library of atomic multipoles for amino acid side-chain rotamers within the catalytic field pointed out the change in the Glu83 conformation as the critical catalytic effect, providing, at low computational cost, insight into the electrostatic preorganization of the enzyme catalytic site at a level of detail that has not yet been accessible in conventional experimental or theoretical methods. This opens the way for rational reverse biocatalyst design at a very limited computational cost without resorting to empirical methods.


Assuntos
Histidina-tRNA Ligase , Aminoacilação , Catálise , Domínio Catalítico , Histidina-tRNA Ligase/metabolismo , Eletricidade Estática
3.
Front Immunol ; 12: 639570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194425

RESUMO

Bacteriophages are able to affect the human immune system. Phage-specific antibodies are considered as major factors shaping phage pharmacokinetics and bioavailability. So far, general knowledge of phage antigenicity nevertheless remains extremely limited. Here we present comparative studies of immunogenicity in two therapeutic bacteriophages, A3R and 676Z, active against Staphylococcus aureus, routinely applied in patients at the Phage Therapy Unit, Poland. Comparison of the overall ability of whole phages to induce specific antibodies in a murine model revealed typical kinetics of IgM and IgG induction by these two phages. In further studies we identified the location of four phage proteins in the virions, with the focus on the external capsid head (Mcp) or tail sheath (TmpH) or an unidentified precise location (ORF059 and ORF096), and we confirmed their role as structural proteins of these viruses. Next, we compared the immune response elicited by these proteins after phage administration in mice. Similar to that in T4 phage, Mcp was the major element of the capsid that induced specific antibodies. Studies of protein-specific sera revealed that antibodies specific to ORF096 were able to neutralize antibacterial activity of the phages. In humans (population level), none of the studied proteins plays a particular role in the induction of specific antibodies; thus none potentially affects in a particular way the effectiveness of A3R and 676Z. Also in patients subjected to phage therapy, we did not observe increased specific immune responses to the investigated proteins.


Assuntos
Imunidade/imunologia , Mamíferos/imunologia , Fagos de Staphylococcus/imunologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Anticorpos/imunologia , Formação de Anticorpos/imunologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Cinética , Masculino , Mamíferos/microbiologia , Mamíferos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia por Fagos/métodos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/virologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia , Vírion/imunologia
4.
J Phys Chem B ; 124(18): 3661-3666, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32293890

RESUMO

Dynamic electrostatic catalytic field (DECF) vectors derived from transition state and reactant wavefunctions for the two-step reaction occurring within ketosteroid isomerase (KSI) have been calculated using MP2/aug-cc-pVTZ and lower theory levels to determine the magnitude of the catalytic effect and the optimal directions of proton transfers in the KSI hydrogen-bond network. The most surprising and meaningful finding is that the KSI catalytic activity is enhanced by proton dislocations proceeding in opposite directions for each of the two consecutive reaction steps in the same hydrogen network. Such a mechanism allows an ultrafast switching of the catalytic proton wire environment, possibly related to the exceptionally high KSI catalytic power.


Assuntos
Prótons , Esteroide Isomerases , Catálise , Ligação de Hidrogênio , Isomerases , Cetosteroides , Esteroide Isomerases/genética
5.
Open Biol ; 3(3): 130006, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23536551

RESUMO

Prior to bacterial cell division, the ATP-dependent polymerization of the cytoskeletal protein, ParA, positions the newly replicated origin-proximal region of the chromosome by interacting with ParB complexes assembled on parS sites located close to the origin. During the formation of unigenomic spores from multi-genomic aerial hyphae compartments of Streptomyces coelicolor, ParA is developmentally triggered to form filaments along the hyphae; this promotes the accurate and synchronized segregation of tens of chromosomes into prespore compartments. Here, we show that in addition to being a segregation protein, ParA also interacts with the polarity protein, Scy, which is a component of the tip-organizing centre that controls tip growth. Scy recruits ParA to the hyphal tips and regulates ParA polymerization. These results are supported by the phenotype of a strain with a mutant form of ParA that uncouples ParA polymerization from Scy. We suggest that the ParA-Scy interaction coordinates the transition from hyphal elongation to sporulation.


Assuntos
Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/metabolismo , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Segregação de Cromossomos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Streptomyces coelicolor/crescimento & desenvolvimento
6.
J Phys Chem B ; 110(19): 9720-7, 2006 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-16686524

RESUMO

On the basis of the crystallographic structures of three nucleic acid intercalation complexes involving ethidium and proflavine, we have analyzed the interaction energies between intercalator chromophores and their four nearest bases, using a hybrid variation-perturbation method at the second-order Møller-Plesset theory level (MP2) with a 6-31G(d,p) basis set. A total MP2 interaction energy minimum precisely reproduces the crystallographic position of the ethidium chromophore in the intercalation plane between UA/AU bases. The electrostatic component constitutes the same fraction of the total energy for all three studied structures. The multipole electrostatic interaction energy, calculated from cumulative atomic multipole moments (CAMMs), was found to converge only after including components above the fifth order. CAMM interaction surfaces, calculated on grids in the intercalation planes of these structures, reasonably reproduce the alignment of intercalators in crystal structures; they exhibit additional minima in the direction of the DNA grooves, however, which also need to be examined at higher theory levels if no crystallographic data are given.


Assuntos
Etídio/química , Substâncias Intercalantes/química , Modelos Químicos , Ácidos Nucleicos/química , Proflavina/química , Algoritmos , Modelos Moleculares , Estrutura Molecular , Purinas/química , Pirimidinas/química , Eletricidade Estática
7.
J Phys Chem A ; 110(6): 2308-13, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16466269

RESUMO

The physical nature of interactions within the active site of cytosine-5-methyltransferase (CMT) was studied using a variation-perturbation energy decomposition scheme defining a sequence of approximate intermolecular interaction energy models. These models have been used to analyze the catalytic activity of residues constituting cytosine-5-methyltransferase active site as well their role in the binding group of de novo designed inhibitors. Our results indicate that Glu119, Arg163, and Arg165 appear to play the dominant role in stabilizing the protonated transition state structure and their influence can be qualitatively approximated by electrostatic interactions alone. The stabilization of neutral structures of the alternative reaction pathway is small, which might suggest the protonated pathway as preferred by the enzyme. Exchange and delocalization terms are negligible in most cases, or they cancel each other to some extent. Interactions of inhibitors with the CMT active site are dominated by electrostatic multipole contributions in analogy with previously studied transition state analogue inhibitors of leucyl aminopeptidase.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , Inibidores Enzimáticos/química , Arginina/química , Sítios de Ligação , Domínio Catalítico , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Ácido Glutâmico/química , Leucil Aminopeptidase/antagonistas & inibidores , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Modelos Químicos , Prótons , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...