Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414314

RESUMO

Here, we report the genome sequence of Tenacibaculum mesophilum strain ECR, which was isolated from the river/ocean interface at Trunk River in Falmouth, Massachusetts. The isolation and sequencing were performed as part of the 2016 and 2018 Microbial Diversity courses at the Marine Biological Laboratory in Woods Hole, Massachusetts.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30714042

RESUMO

We report here the draft genome sequence of a strain of Tenacibaculum discolor (Bacteroidetes) that was isolated from the river-ocean interface at Trunk River in Falmouth, Massachusetts. The isolation and genomic sequencing were performed during the 2016 and 2018 Microbial Diversity summer programs at the Marine Biological Laboratory in Woods Hole, Massachusetts.

3.
Curr Biol ; 24(19): 2288-94, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25264252

RESUMO

As a cellular organelle, the cilium contains a unique protein composition. Entry of both membrane and cytosolic components is tightly regulated by gating mechanisms at the cilium base; however, the mechanistic details of ciliary gating are largely unknown. We previously proposed that entry of cytosolic components is regulated by mechanisms similar to those of nuclear transport and is dependent on nucleoporins (NUPs), which comprise a ciliary pore complex (CPC). To investigate ciliary gating mechanisms, we developed a system to clog the pore by inhibiting NUP function via forced dimerization. We targeted NUP62, a component of the central channel of the nuclear pore complex (NPC), for forced dimerization by tagging it with the homodimerizing Fv domain. As proof of principle, we show that forced dimerization of NUP62-Fv attenuated (1) active transport of BSA into the nuclear compartment and (2) the kinesin-2 motor KIF17 into the ciliary compartment. Using the pore-clogging technique, we find that forced dimerization of NUP62 attenuated the gated entry of cytosolic proteins but did not affect entry of membrane proteins or diffusional entry of small cytosolic proteins. We propose a model in which active transport of cytosolic proteins into both nuclear and ciliary compartments requires functional NUPs of the central pore, whereas lateral entry of membrane proteins utilizes a different mechanism that is likely specific to each organelle's limiting membrane.


Assuntos
Cílios/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Citoplasma/metabolismo , Citosol/metabolismo , Dimerização , Camundongos , Células NIH 3T3 , Transporte Proteico
4.
Cilia ; 2(1): 11, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23985042

RESUMO

As an organelle, the cilium contains a unique complement of protein and lipid. Recent work has begun to shed light on the mechanisms that regulate entry of ciliary proteins into the compartment. Here, we focus on the mechanisms that regulate ciliary entry of cytosolic molecules. Studies have revealed a size exclusion mechanism for ciliary entry that is similar to the barrier to nuclear entry. Active import into the ciliary compartment involves nuclear trafficking components including importins, a Ran-guanosine triphosphate gradient, and nucleoporins. Together, this work indicates that nuclei and cilia share molecular, structural and mechanistic components that regulate import into the compartments.

5.
Methods Enzymol ; 524: 75-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23498735

RESUMO

Cilia and flagella are microtubule-based organelles that play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in cilia formation and function cause a broad class of human genetic diseases called ciliopathies. To carry out their specialized functions, cilia contain a unique complement of proteins that must be imported into the ciliary compartment. In this chapter, we describe methods to measure the permeability barrier of the ciliary gate by microinjection of fluorescent proteins and dextrans of different sizes into ciliated cells. We also describe a fluorescence recovery after photobleaching assay to measure the entry of ciliary proteins into the ciliary compartment. These assays can be used to determine the molecular mechanisms that regulate the formation and function of cilia in mammalian cells.


Assuntos
Proteínas de Transporte/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Microtúbulos/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/genética , Permeabilidade da Membrana Celular , Dextranos/análise , Dextranos/metabolismo , Células Epiteliais/citologia , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes , Humanos , Camundongos , Microinjeções , Células NIH 3T3 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...