Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 121(7): 1312-1321, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35192840

RESUMO

Metal binding by members of the growth hormone (GH) family of hematopoietic cytokines has been a subject of considerable interest. However, beyond appreciation of its role in reversible packing of GH proteins in secretory granules, the molecular mechanisms of metal binding and granule formation remain poorly understood. Here, we investigate metal binding by a GH family member prolactin (PRL) using paramagnetic metal titration and chelation experiments. Cu2+-mediated paramagnetic relaxation enhancement measurements identified two partial metal-binding sites on the opposite faces of PRL composed of residues H30/H180 and E93/H97, respectively. Coordination of metal ions by these two sites causes formation of inter-molecular bridges between the PRL protomers and enables formation of reversible higher aggregates. These findings in vitro suggest a model for reversible packaging of PRL in secretory granules. The proposed mechanism of metal-promoted PRL aggregation lends insight and support to the previously suggested role of metal coordination in secretory granule formation by GH proteins.


Assuntos
Hormônio do Crescimento , Prolactina , Sítios de Ligação , Grânulos Citoplasmáticos/metabolismo , Hormônio do Crescimento/metabolismo , Prolactina/metabolismo , Proteínas/metabolismo
2.
Front Mol Biosci ; 7: 164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766282

RESUMO

CXCL12 activates CXCR4 and is involved in embryogenesis, hematopoiesis, and angiogenesis. It has pathological roles in HIV-1, WHIM disease, cancer, and autoimmune diseases. An antagonist, AMD3100, is used for the release of CD34+ hematopoietic stem cells from the bone marrow for autologous transplantation for lymphoma or multiple myeloma patients. Adverse effects are tolerated due to its short-term treatment, but AMD3100 is cardiotoxic in clinical studies for HIV-1. In an effort to determine whether Saccharomyces cerevisiae expressing a functional human CXCR4 could be used as a platform for identifying a ligand from a library of less ∼1,000 compounds, a high-throughput screening was developed. We report that 2-carboxyphenyl phosphate (fosfosal) up-regulates CXCR4 activation only in the presence of CXCL12. This is the first identification of a compound that increases CXCR4 activity by any mechanism. We mapped the fosfosal binding site on CXCL12, described its mechanism of action, and studied its chemical components, salicylate and phosphate, to conclude that they synergize to achieve the functional effect.

3.
J Biol Chem ; 290(16): 10544-54, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25716316

RESUMO

Polycystin-2 (PC2) belongs to the transient receptor potential (TRP) family and forms a Ca(2+)-regulated channel. The C-terminal cytoplasmic tail of human PC2 (HPC2 Cterm) is important for PC2 channel assembly and regulation. In this study, we characterized the oligomeric states and Ca(2+)-binding profiles in the C-terminal tail using biophysical approaches. Specifically, we determined that HPC2 Cterm forms a trimer in solution with and without Ca(2+) bound, although TRP channels are believed to be tetramers. We found that there is only one Ca(2+)-binding site in the HPC2 Cterm, located within its EF-hand domain. However, the Ca(2+) binding affinity of the HPC2 Cterm trimer is greatly enhanced relative to the intrinsic binding affinity of the isolated EF-hand domain. We also employed the sea urchin PC2 (SUPC2) as a model for biophysical and structural characterization. The sea urchin C-terminal construct (SUPC2 Ccore) also forms trimers in solution, independent of Ca(2+) binding. In contrast to the human PC2, the SUPC2 Ccore contains two cooperative Ca(2+)-binding sites within its EF-hand domain. Consequently, trimerization does not further improve the affinity of Ca(2+) binding in the SUPC2 Ccore relative to the isolated EF-hand domain. Using NMR, we localized the Ca(2+)-binding sites in the SUPC2 Ccore and characterized the conformational changes in its EF-hand domain due to trimer formation. Our study provides a structural basis for understanding the Ca(2+)-dependent regulation of the PC2 channel by its cytosolic C-terminal domain. The improved methodology also serves as a good strategy to characterize other Ca(2+)-binding proteins.


Assuntos
Cálcio/metabolismo , Ouriços-do-Mar/metabolismo , Canais de Cátion TRPP/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Ativação do Canal Iônico , Transporte de Íons , Modelos Moleculares , Dados de Sequência Molecular , Agregados Proteicos , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ouriços-do-Mar/química , Alinhamento de Sequência , Especificidade da Espécie , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Termodinâmica
4.
J Am Chem Soc ; 136(29): 10277-86, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24969589

RESUMO

Weak and transient protein-protein interactions underlie numerous biological processes. However, the location of the interaction sites of the specific complexes and the effect of transient, nonspecific protein-protein interactions often remain elusive. We have investigated the weak self-association of human growth hormone (hGH, KD = 0.90 ± 0.03 mM) at neutral pH by the paramagnetic relaxation enhancement (PRE) of the amide protons induced by the soluble paramagnetic relaxation agent, gadodiamide (Gd(DTPA-BMA)). Primarily, it was found that the PREs are in agreement with the general Hwang-Freed model for relaxation by translational diffusion (J. Chem. Phys. 1975, 63, 4017-4025), only if crowding effects on the diffusion in the protein solution are taken into account. Second, by measuring the PREs of the amide protons at increasing hGH concentrations and a constant concentration of the relaxation agent, it is shown that a distinction can be made between residues that are affected only by transient, nonspecific protein-protein interactions and residues that are involved in specific protein-protein associations. Thus, the PREs of the former residues increase linearly with the hGH concentration in the entire concentration range because of a reduction of the diffusion caused by the transient, nonspecific protein-protein interactions, while the PREs of the latter residues increase only at the lower hGH concentrations but decrease at the higher concentrations because of specific protein-protein associations that impede the access of gadodiamide to the residues of the interaction surface. Finally, it is found that the ultraweak aggregation of hGH involves several interaction sites that are located in patches covering a large part of the protein surface.


Assuntos
Gadolínio DTPA/química , Hormônio do Crescimento Humano/química , Ressonância Magnética Nuclear Biomolecular/métodos , Solventes/química , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Prótons
5.
FASEB J ; 28(5): 2332-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24558196

RESUMO

Polycystin 2 (PC2) is a calcium-dependent calcium channel, and mutations to human PC2 (hPC2) are associated with polycystic kidney disease. The C-terminal tail of hPC2 contains 2 EF hand motifs, but only the second binds calcium. Here, we investigate whether these EF hand motifs serve as a calcium sensor responsible for the calcium dependence of PC2 function. Using NMR and bioinformatics, we show that the overall fold is highly conserved, but in evolutionarily earlier species, both EF hands bind calcium. To test whether the EF hand motif is truly a calcium sensor controlling PC2 channel function, we altered the number of calcium binding sites in hPC2. NMR studies confirmed that modified hPC2 binds an additional calcium ion. Single-channel recordings demonstrated a leftward shift in the calcium dependence, and imaging studies in cells showed that calcium transients were enhanced compared with wild-type hPC2. However, biophysics and functional studies showed that the first EF hand can only bind calcium and be functionally active if the second (native) calcium-binding EF hand is intact. These results suggest that the number and location of calcium-binding sites in the EF hand senses the concentration of calcium required for PC2 channel activity and cellular function.


Assuntos
Motivos EF Hand , Canais de Cátion TRPP/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Linhagem Celular , Biologia Computacional , Humanos , Rim/metabolismo , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Filogenia , Plasmídeos/metabolismo , Ligação Proteica , Ouriços-do-Mar , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Suínos
6.
Biophys J ; 105(12): 2843-53, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24359756

RESUMO

We present an improved and extended version of a recently proposed mathematical approach for modeling isotherms of ligand-to-macromolecule binding from isothermal titration calorimetry. Our approach uses ordinary differential equations, solved implicitly and numerically as initial value problems, to provide a quantitative description of the fraction bound of each competing member of a complex mixture of macromolecules from the basis of general binding polynomials. This approach greatly simplifies the formulation of complex binding models. In addition to our generalized, model-free approach, we have introduced a mathematical treatment for the case where ligand is present before the onset of the titration, essential for data analysis when complete removal of the binding partner may disrupt the structural and functional characteristics of the macromolecule. Demonstration programs playable on a freely available software platform are provided. Our method is experimentally validated with classic calcium (Ca(2+)) ion-selective potentiometry and isotherms of Ca(2+) binding to a mixture of chelators with and without residual ligand present in the reaction vessel. Finally, we simulate and compare experimental data fits for the binding isotherms of Ca(2+) binding to its canonical binding site (EF-hand domain) of polycystin 2, a Ca(2+)-dependent channel with relevance to polycystic kidney disease.


Assuntos
Cálcio/metabolismo , Calorimetria/métodos , Motivos EF Hand , Modelos Biológicos , Canais de Cátion TRPP/metabolismo , Humanos , Ligação Proteica , Canais de Cátion TRPP/química
7.
J Biol Chem ; 287(45): 37907-16, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988235

RESUMO

Peripheral neuropathy is one of the most severe and irreversible side effects caused by treatment from several chemotherapeutic drugs, including paclitaxel (Taxol®) and vincristine. Strategies are needed that inhibit this unwanted side effect without altering the chemotherapeutic action of these drugs. We previously identified two proteins in the cellular pathway that lead to Taxol-induced peripheral neuropathy, neuronal calcium sensor-1 (NCS-1) and calpain. Prolonged treatment with Taxol induces activation of calpain, degradation of NCS-1, and loss of intracellular calcium signaling. This paper has focused on understanding the molecular basis for prevention of peripheral neuropathy by testing the effects of addition of two candidate compounds to the existing chemotherapeutic drug regime: lithium and ibudilast. We found that the co-administration of either lithium or ibudilast to neuroblastoma cells that were treated with Taxol or vincristine inhibited activation of calpain and the reductions in NCS-1 levels and calcium signaling associated with these chemotherapeutic drugs. The ability of Taxol to alter microtubule formation was unchanged by the addition of either candidate compound. These results allow us to suggest that it is possible to prevent the unnecessary and irreversible damage caused by chemotherapeutic drugs while still maintaining therapeutic efficacy. Specifically, the addition of either lithium or ibudilast to existing chemotherapy treatment protocols has the potential to prevent chemotherapy-induced peripheral neuropathy.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Lítio/farmacologia , Paclitaxel/farmacologia , Piridinas/farmacologia , Calpaína/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Immunoblotting , Microscopia Confocal , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Imagem Molecular , Proteínas Sensoras de Cálcio Neuronal/genética , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/prevenção & controle , Inibidores de Fosfodiesterase/farmacologia , Proteólise/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/toxicidade
8.
Biochemistry ; 51(38): 7506-14, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22931430

RESUMO

Regulation of cellular processes by dietary nutrients is known to affect the likelihood of cancer development. One class of cancer-preventive nutrients, isothiocyanates (ITCs), derived from the consumption of cruciferous vegetables, is known to have various effects on cellular biochemistry. One target of ITCs is macrophage migration inhibitory factor (MIF), a widely expressed protein with known inflammatory, pro-tumorigenic, pro-angiogenic, and anti-apoptotic properties. MIF is covalently inhibited by a variety of ITCs, which in part may explain how they exert their cancer-preventive effects. We report the crystallographic structures of human MIF bound to phenethylisothiocyanate and to l-sulforaphane (dietary isothiocyanates derived from watercress and broccoli, respectively) and correlate structural features of these two isothiocyanates with their second-order rate constants for MIF inactivation. We also characterize changes in the MIF structure using nuclear magnetic resonance heteronuclear single-quantum coherence spectra of these complexes and observe many changes at the subunit interface. While a number of chemical shifts do not change, many of those that change do not have features similar in magnitude or direction for the two isothiocyanates. The difference in the binding modes of these two ITCs provides a means of using structure-activity relationships to reveal insights into MIF biological interactions. The results of this study provide a framework for the development of therapeutics that target MIF.


Assuntos
Isotiocianatos/farmacologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Neoplasias/prevenção & controle , Cristalização , Humanos , Cinética , Fatores Inibidores da Migração de Macrófagos/química , Modelos Moleculares , Conformação Proteica
9.
Biochemistry ; 51(28): 5642-54, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22686371

RESUMO

MIP-2/CXCL2 is a murine chemokine related to human chemokines that possesses the Glu-Leu-Arg (ELR) activation motif and activates CXCR2 for neutrophil chemotaxis. We determined the structure of MIP-2 to 1.9 Å resolution and created a model with its murine receptor CXCR2 based on the coordinates of human CXCR4. Chemokine-induced migration of cells through specific G-protein coupled receptors is regulated by glycosaminoglycans (GAGs) that oligomerize chemokines. MIP-2 GAG-binding residues were identified that interact with heparin disaccharide I-S by NMR spectroscopy. A model GAG/MIP-2/CXCR2 complex that supports a 2:2 complex between chemokine and receptor was created. Mutants of these disaccharide-binding residues were made and tested for heparin binding, in vitro neutrophil chemotaxis, and in vivo neutrophil recruitment to the mouse peritoneum and lung. The mutants have a 10-fold decrease in neutrophil chemotaxis in vitro. There is no difference in neutrophil recruitment between wild-type MIP-2 and mutants in the peritoneum, but all activity of the mutants is lost in the lung, supporting the concept that GAG regulation of chemokines is tissue-dependent.


Assuntos
Quimiocina CXCL2/química , Glicosaminoglicanos/química , Receptores de Interleucina-8B/química , Alanina/genética , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quimiotaxia de Leucócito , Cristalografia por Raios X , Dissacarídeos/química , Feminino , Glicosaminoglicanos/metabolismo , Heparina/análogos & derivados , Heparina/química , Humanos , Pulmão/citologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mutação , Neutrófilos/imunologia , Neutrófilos/fisiologia , Ressonância Magnética Nuclear Biomolecular , Cavidade Peritoneal/citologia , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Interleucina-8B/metabolismo
10.
J Biol Chem ; 285(49): 38524-33, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20889499

RESUMO

Human prolactin (hPRL), a member of the family of hematopoietic cytokines, functions as both an endocrine hormone and autocrine/paracrine growth factor. We have previously demonstrated that recognition of the hPRL·receptor depends strongly on solution acidity over the physiologic range from pH 6 to pH 8. The hPRL·receptor binding interface contains four histidines whose protonation is hypothesized to regulate pH-dependent receptor recognition. Here, we systematically dissect its molecular origin by characterizing the consequences of His to Ala mutations on pH-dependent receptor binding kinetics, site-specific histidine protonation, and high resolution structures of the intermolecular interface. Thermodynamic modeling of the pH dependence to receptor binding affinity reveals large changes in site-specific protonation constants for a majority of interface histidines upon complexation. Removal of individual His imidazoles reduces these perturbations in protonation constants, which is most likely explained by the introduction of solvent-filled, buried cavities in the crystallographic structures without inducing significant conformational rearrangements.


Assuntos
Histidina/química , Modelos Moleculares , Prolactina/química , Receptores da Prolactina/química , Linhagem Celular Tumoral , Histidina/genética , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Prolactina/genética , Prolactina/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Termodinâmica
11.
Protein Sci ; 18(5): 909-20, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19384991

RESUMO

A member of the family of hematopoietic cytokines human prolactin (hPRL) is a 23k kDa polypeptide hormone, which displays pH dependence in its structural and functional properties. The binding affinity of hPRL for the extracellular domain of its receptor decreases 500-fold over the relatively narrow, physiologic pH range from 8 to 6; whereas, the affinity of human growth hormone (hGH), its closest evolutionary cousin, does not. Similarly, the structural stability of hPRL decreases from 7.6 to 5.6 kcal/mol from pH 8 to 6, respectively, whereas the stability of hGH is slightly increased over this same pH range. hPRL contains nine histidines, compared with hGH's three, and they are likely responsible for hPRL's pH-dependent behavior. We have systematically mutated each of hPRL's histidines to alanine and measured the effect on pH-dependent global stability. Surprisingly, a vast majority of these mutations stabilize the native protein, by as much as 2-3 kcal/mol. Changes in the overall pH dependence to hPRL global stability can be rationalized according to the predominant structural interactions of individual histidines in the hPRL tertiary structure. Using double mutant cycles, we detect large interaction free energies within a cluster of nearby histidines, which are both stabilizing and destabilizing to the native state. Finally, by comparing the structural locations of hPRL's nine histidines with their homologous residues in hGH, we speculate on the evolutionary role of replacing structurally stabilizing residues with histidine to introduce pH dependence to cytokine function.


Assuntos
Alanina/química , Histidina/química , Mutação , Prolactina/química , Alanina/genética , Alanina/metabolismo , Histidina/genética , Histidina/metabolismo , Hormônio do Crescimento Humano/química , Humanos , Concentração de Íons de Hidrogênio , Análise dos Mínimos Quadrados , Modelos Moleculares , Prolactina/genética , Prolactina/metabolismo , Estabilidade Proteica
12.
Biochemistry ; 47(33): 8638-47, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18652486

RESUMO

The structural and functional properties of human prolactin (hPRL), a 23 kDa protein hormone and cytokine, are pH-dependent. The dissociation rate constant for binding to the extracellular domain of the hPRL receptor increases nearly 500-fold over the relatively narrow and physiologic range from pH 8 to 6. As the apparent midpoint for this transition occurs around pH 6.5, we have looked toward histidine residues as a potential biophysical origin of the behavior. hPRL has a surprising number of nine histidines, nearly all of which are present on the protein surface. Using NMR spectroscopy, we have monitored site-specific proton binding to eight of these nine residues and derived equilibrium dissociation constants. During this analysis, a thermodynamic interaction between a localized triplet of three histidines (H27, H30, and H180) became apparent, which was subsequently confirmed by site-directed mutagenesis. After consideration of multiple potential models, we present statistical support for the existence of two negative cooperativity constants, one linking protonation of residues H30 and H180 with a magnitude of approximately 0.1 and the other weaker interaction between residues H27 and H30. Additionally, mutation of any of these three histidines to alanine stabilizes the folded protein relative to the chemically denatured state. A detailed understanding of these complex protonation reactions will aid in elucidating the biophysical mechanism of pH-dependent regulation of hPRL's structural and functional properties.


Assuntos
Histidina/química , Prolactina/química , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Prolactina/genética , Prolactina/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes
13.
Proteins ; 73(1): 161-72, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18409193

RESUMO

The self-association of human growth hormone(hGH) was investigated using 15N NMR relaxation.The investigation relies on the 15N R1 and R2 relaxation rates and the heteronuclear{1H}-15N NOEs of the backbone amide groups at multiple protein concentrations. It is shown that the rotational correlation time of hGH in solution depends strongly on its concentration, indicating a significant degree of self-association.The self-association is reversible and the monomers in the aggregates are noncovalently linked. Extrapolation of the relaxation data to zero concentration predicts a correlation time of 13.4 ns and a rotational diffusion anisotropy of 1.26 for monomeric hGH, in agreement with the rotational diffusion properties estimated by hydrodynamic calculations. Moreover, the extrapolation allows characterization of the backbone dynamics of monomeric hGH without interference from self-association phenomena, and it is found that hGH is considerably more flexible than originally thought. A concerted least-squares analysis of the 15N relaxations and their concentration dependence reveals that the self-association goes beyond a simple monomer-dimer equilibrium, and that tetramers or other multimeric states co-exist in fast exchange with the monomeric and dimeric hGH at sub-millimolar concentrations. Small changes in the 1H and 15N amide chemical shifts suggest that a region around the C-terminus is involved in the oligomer formation.


Assuntos
Hormônio do Crescimento Humano/química , Humanos , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química
14.
Biochemistry ; 46(9): 2398-410, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17279774

RESUMO

A member of the family of hematopoietic cytokines, human prolactin (hPRL) serves a dual role both as an endocrine hormone and as an autocrine/paracrine cytokine or growth factor. During investigation of the solution structural properties of hPRL, we have noted a surprising pH dependence of its structural stability over a range from approximately pH 6.0 to pH 8.0. An analysis of backbone atom NMR chemical shift changes and backbone amide hydrogen-deuterium exchange rates due to titration of the solution pH over this same range, along with calculations of protein surface electrostatic potential, suggests the possible involvement of a localized cluster of three His residues (27, 30, and 180), which comprise a portion of the high-affinity receptor-binding epitope. Surface plasmon resonance analysis of the interaction between hPRL and the extracellular domain (ECD) of the hPRL receptor reveals a selective 500-fold change in the dissociation rate between pH 8.3 and pH 5.8. In comparison, the interaction of hGH with the same receptor ECD did not demonstrate any significant dependence on pH. We also present an initial investigation of the pH dependence of hPRL function in rat Nb2 cell proliferation assays and a STAT5 luciferase gene reporter assay in the T47D human breast cancer cell line, whose results are consistent with our biophysical studies. The potential implications of this variation in hPRL's structural stability and receptor-binding kinetics over this physiologic range of pH are discussed.


Assuntos
Hormônio do Crescimento/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Prolactina/química , Ligação Proteica , Espectrometria de Fluorescência
15.
Biochemistry ; 43(38): 12198-209, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15379558

RESUMO

In humans, the enzyme thiopurine methyltransferase (TPMT) metabolizes 6-thiopurine (6-TP) medications, commonly used for immune suppression and for the treatment of hematopoietic malignancies. Genetic polymorphisms in the TPMT protein sequence accelerate intracellular degradation of the enzyme through an ubiquitylation and proteasomal-dependent pathway. Research has led to the hypothesis that these polymorphisms destabilize the native structure of TPMT, resulting in the formation of misfolded or partially unfolded states, which are subsequently recognized for intracellular degradation. Addition of the cosubstrate, S-adenosylmethionine (SAM), prevents degradation of the TPMT polymorphs in experimental assays, presumably by stabilizing the native structure. Using a bacterial orthologue of TPMT from Pseudomonas syringae, we have used NMR spectroscopy to describe the consequences of binding sinefungin, a SAM analogue, on the structure and dynamics of the TPMT protein backbone. NMR chemical shift mapping experiments localize sinefungin to a highly conserved site in classical methyltransferases. Distal chemical shift changes involving the presumed active site cover imply indirect conformational changes induced by sinefungin, which may play a role in substrate recognition or the catalytic mechanism. Analysis of protein backbone dynamics based on NMR relaxation reveals a combination of complementary effects. Whereas the peripheral, inserted structural elements of the TPMT topology are conformationally stabilized by the presence of sinefungin, a consistent increase in backbone mobility is observed for the central, conserved structural elements. The potential implications for the structural and dynamic effects of binding sinefungin for the catalytic mechanism of the enzyme and the stabilization of the degradation-susceptible TPMT polymorphs are discussed.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/química , Metiltransferases/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/metabolismo , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Sequência Conservada , Mamíferos , Metiltransferases/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Pseudomonas syringae/enzimologia , Pseudomonas syringae/genética
16.
J Mol Neurosci ; 22(1-2): 43-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14742909

RESUMO

There are several steps that must occur for secretory granules to form: (1) Secretory proteins that make up the dense cores of the granules must be concentrated; (2) membrane proteins necessary for granule function must accumulate in the correct location; and (3) inappropriate membrane proteins and excess membrane must be removed. Reversible aggregation of secretory granule proteins provides a mechanism for concentrating and sorting these proteins. There is specificity in the way secretory granule proteins are treated in cells that make granules. The specificity has been shown in some cases to occur after the aggregation process, so that granules containing different aggregates function differently. An explanation could be that a property of the aggregate, such as a surface motif, might influence the accumulation of membrane proteins necessary for granule function. Such a conclusion implies that the aggregates are not amorphous but have structure. Use of NMR spectroscopy to investigate changes in the environment of amino acid residues in secretory granule proteins as they form oligomers by using 15N relaxation times might provide a means to determine which residues are specifically involved in aggregation.


Assuntos
Secreções Corporais/fisiologia , Membranas Intracelulares/metabolismo , Proteínas/metabolismo , Vesículas Secretórias/metabolismo , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos/fisiologia , Animais , Humanos , Membranas Intracelulares/química , Substâncias Macromoleculares , Ressonância Magnética Nuclear Biomolecular , Prolactina/química , Prolactina/metabolismo , Proteínas/química , Vesículas Secretórias/química
17.
Anal Chem ; 75(10): 2421-32, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12918986

RESUMO

13C CP-MAS and DP-MAS spin-counting experiments have been carried out on an absolute basis for a specific whole soil and its humin, humic acid, and fulvic acid fractions, as well as a sample of the soil that was treated with 2% HF(aq). The results confirm previous conclusions that a substantial fraction of the carbon content indicated by classic elemental analysis is missed in some samples, especially whole soil and humin, by both CP-MAS and DP-MAS 13C NMR methods, and that the problem is more serious for CP-MAS than for DP-MAS. This study also confirms the fact that treatment of soil organic matter with 2% HF(aq) dramatically reduces this problem but may generate some structural uncertainties associated with significant structural alterations that accompany the HF(aq) treatment, as indicated by the 13C NMR data. The relationship between the "missing carbon" problem and the concentration of paramagnetic centers, especially Fe(III) centers, is explored in substantial detail.


Assuntos
Substâncias Húmicas/química , Espectroscopia de Ressonância Magnética/métodos , Solo/análise , Isótopos de Carbono , Substâncias Húmicas/análise , Poluentes do Solo/análise
18.
J Mol Biol ; 328(5): 1105-21, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12729745

RESUMO

Human prolactin is a 199-residue (23 kDa) protein closely related to growth hormone and placental lactogen with properties and functions resembling both a hormone and a cytokine. As a traditional hormone, prolactin is produced by lactotrophic cells in the pituitary and secreted into the bloodstream where it acts distally to regulate reproduction and promote lactation. Pituitary cells store prolactin in secretory granules organized around large prolactin aggregates, which are produced within the trans layer of the Golgi complex. Extrapituitary prolactin is synthesized by a wide variety of cells but is not stored in secretory granules. Extrapituitary prolactin displays immunomodulatory activities and acts as a growth factor for cancers of the breast, prostate and tissues of the female reproductive system. We have determined the tertiary structure of human prolactin using three-dimensional (3D) and four-dimensional (4D) heteronuclear NMR spectroscopy. As expected, prolactin adopts an "up-up-down-down" four-helical bundle topology and resembles other members of the family of hematopoietic cytokines. Prolactin displays three discrete structural differences from growth hormone: (1) a structured N-terminal loop in contact with the first helix, (2) a missing mini-helix in the loop between the first and second helices, and (3) a shorter loop between the second and third helices lacking the perpendicular mini-helix observed in growth hormone. Residues necessary for functional binding to the prolactin receptor are clustered on the prolactin surface in a position similar to growth hormone. The backbone dynamics of prolactin were investigated by analysis of 15N NMR relaxation phenomena and demonstrated a rigid four-helical bundle with relatively mobile interconnecting loops. Comparison of global macromolecular tumbling at 0.1mM and 1.0mM prolactin revealed reversible oligomerization, which was correlated to dynamic light scattering experiments. The existence of a reversible oligomerization reaction in solution provides insight into previous results describing the in vitro and in vivo aggregation properties of human prolactin.


Assuntos
Prolactina/química , Sequência de Aminoácidos , Epitopos/química , Feminino , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/genética , Humanos , Luz , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Prolactina/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...