Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 99(3): 550-6, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17680675

RESUMO

The bactericidal radiation dosages at specific wavelengths in the ultraviolet (UV)-visible spectrum are not well documented. Such information is important for the development of new monochromatic bactericidal devices to be operated at different wavelengths. In this study, radiation dosages required to cause mortality of an Escherichia coli strain, ATCC 25922, at various wavelengths between 250 and 532 nm in the UV and visible spectrum were determined. Radiation at 265 nm in the UV region was most efficient in killing the E. coli cells and 100% mortality was achieved at a dose of 1.17 log mJ/cm(2). In the visible spectrum, the radiation dosages required for a one-log reduction of the E. coli cell density at 458 and 488 nm were 5.5 and 6.9 log mJ/cm(2), respectively. However, at 515 and 532 nm, significant killing was not observed at radiation dosage up to 7 log mJ/cm(2). Based on the cell survival data at various radiation dosages between 250 and 488 nm, a predictive equation for the survival of E. coli cells is derived, namely log(S/S(0)) = -(1.089 x 10(7) e(-0.0633lambda))D. The symbols, S(0), S, lambda, and D, represent initial cell density, cell density after irradiation, wavelength of the radiation and radiation dosage, respectively. The proportion of the surviving E. coli cells decreases exponentially with the increase in radiation dosage at a given wavelength. In addition, the radiation dose required for killing a certain fraction of the E. coli cells increases exponentially as the wavelength of radiation increases.


Assuntos
Escherichia coli/fisiologia , Escherichia coli/efeitos da radiação , Luz , Modelos Biológicos , Raios Ultravioleta , Apoptose/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Simulação por Computador , Relação Dose-Resposta à Radiação , Doses de Radiação
2.
Biotechnol Bioeng ; 94(4): 793-802, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16489628

RESUMO

The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms.


Assuntos
Biofilmes/efeitos da radiação , Lasers , Moraxella/genética , Moraxella/efeitos da radiação , Fator sigma/genética , Raios Ultravioleta , Animais , Carbono/metabolismo , Microscopia Confocal , Moraxella/citologia , Moraxella/crescimento & desenvolvimento , Plâncton/citologia , Plâncton/crescimento & desenvolvimento , Plâncton/efeitos da radiação , Fator sigma/deficiência
3.
Opt Express ; 12(23): 5754-9, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19488212

RESUMO

The relative performances of fluorescence, oblique incidence reflection and phase contrast imaging techniques have been studied for the purpose of monitoring long-term cellular activity and cell viability of several types of normal and cancerous cells in cultures. Time-lapse movies of live cell imaging of untagged and green fluorescent protein (GFP) tagged cell lines are presented. Oblique incidence reflection microscopy is the simplest and least expensive method to implement, appears to be the least phototoxic to cells, and is recommended for use in long-term optical monitoring of cell viability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...