Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2309333121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289951

RESUMO

We present improved estimates of air-sea CO2 exchange over three latitude bands of the Southern Ocean using atmospheric CO2 measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2 measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2 data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science 374, 1275-1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθe surfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air-sea CO2 exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2 observations.

2.
Glob Chang Biol ; 28(24): 7327-7339, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36117409

RESUMO

We explore the ability of the atmospheric CO2 record since 1900 to constrain the source of CO2 from land use and land cover change (hereafter "land use"), taking account of uncertainties in other terms in the global carbon budget. We find that the atmospheric constraint favors land use CO2 flux estimates with lower decadal variability and can identify potentially erroneous features, such as emission peaks around 1960 and after 2000, in some published estimates. Furthermore, we resolve an offset in the global carbon budget that is most plausibly attributed to the land use flux. This correction shifts the mean land use flux since 1900 across 20 published estimates down by 0.35 PgC year-1 to 1.04 ± 0.57 PgC year-1 , which is within the range but at the low end of these estimates. We show that the atmospheric CO2 record can provide insights into the time history of the land use flux that may reduce uncertainty in this term and improve current understanding and projections of the global carbon cycle.


Assuntos
Dióxido de Carbono , Ecossistema , Ciclo do Carbono , Carbono , Incerteza
3.
J Geophys Res Atmos ; 127(13): e2021JD035892, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35864859

RESUMO

Long-term measurements at the Mauna Loa Observatory (MLO) show that the CO2 seasonal cycle amplitude (SCA) increased from 1959 to 2019 at an overall rate of 0.22  ±  0.034 ppm decade-1 while also varying on interannual to decadal time scales. These SCA changes are a signature of changes in land ecological CO2 fluxes as well as shifting winds. Simulations with the TM3 tracer transport model and CO2 fluxes from the Jena CarboScope CO2 Inversion suggest that shifting winds alone have contributed to a decrease in SCA of -0.10  ±  0.022 ppm decade-1 from 1959 to 2019, partly offsetting the observed long-term SCA increase associated with enhanced ecosystem net primary production. According to these simulations and MIROC-ACTM simulations, the shorter-term variability of MLO SCA is nearly equally driven by varying ecological CO2 fluxes (49%) and varying winds (51%). We also show that the MLO SCA is strongly correlated with the Pacific Decadal Oscillation (PDO) due to varying winds, as well as with a closely related wind index (U-PDO). Since 1980, 44% of the wind-driven SCA decrease has been tied to a secular trend in the U-PDO, which is associated with a progressive weakening of westerly winds at 700 mbar over the central Pacific from 20°N to 40°N. Similar impacts of varying winds on the SCA are seen in simulations at other low-latitude Pacific stations, illustrating the difficulty of constraining trend and variability of land CO2 fluxes using observations from low latitudes due to the complexity of circulation changes.

5.
Sci Data ; 9(1): 361, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750672

RESUMO

Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

7.
Geophys Res Lett ; 48(22): e2021GL095396, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34924639

RESUMO

We assess the detectability of COVID-like emissions reductions in global atmospheric CO2 concentrations using a suite of large ensembles conducted with an Earth system model. We find a unique fingerprint of COVID in the simulated growth rate of CO2 sampled at the locations of surface measurement sites. Negative anomalies in growth rates persist from January 2020 through December 2021, reaching a maximum in February 2021. However, this fingerprint is not formally detectable unless we force the model with unrealistically large emissions reductions (2 or 4 times the observed reductions). Internal variability and carbon-concentration feedbacks obscure the detectability of short-term emission reductions in atmospheric CO2. COVID-driven changes in the simulated, column-averaged dry air mole fractions of CO2 are eclipsed by large internal variability. Carbon-concentration feedbacks begin to operate almost immediately after the emissions reduction; these feedbacks reduce the emissions-driven signal in the atmosphere carbon reservoir and further confound signal detection.

8.
Science ; 374(6572): 1275-1280, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855495

RESUMO

The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO2), yet estimates of air-sea CO2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO2 exchange by relating fluxes to horizontal and vertical CO2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO2 gradient provide robust flux constraints. We found an annual mean flux of ­0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009­2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO2 (Pco2)­based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations.

9.
Geophys Res Lett ; 48(11): e2021GL092744, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34149111

RESUMO

Responses to COVID-19 have resulted in unintended reductions of city-scale carbon dioxide (CO2) emissions. Here, we detect and estimate decreases in CO2 emissions in Los Angeles and Washington DC/Baltimore during March and April 2020. We present three lines of evidence using methods that have increasing model dependency, including an inverse model to estimate relative emissions changes in 2020 compared to 2018 and 2019. The March decrease (25%) in Washington DC/Baltimore is largely supported by a drop in natural gas consumption associated with a warm spring whereas the decrease in April (33%) correlates with changes in gasoline fuel sales. In contrast, only a fraction of the March (17%) and April (34%) reduction in Los Angeles is explained by traffic declines. Methods and measurements used herein highlight the advantages of atmospheric CO2 observations for providing timely insights into rapidly changing emissions patterns that can empower cities to course-correct CO2 reduction activities efficiently.

10.
Glob Chang Biol ; 27(16): 3798-3809, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33934460

RESUMO

The 2015-2016 El Niño was one of the strongest on record, but its influence on the carbon balance is less clear. Using Northern Hemisphere atmospheric CO2 observations, we found both detrended atmospheric CO2 growth rate (CGR) and CO2 seasonal-cycle amplitude (SCA) of 2015-2016 were much higher than that of other El Niño events. The simultaneous high CGR and SCA were unusual, because our analysis of long-term CO2 observations at Mauna Loa revealed a significantly negative correlation between CGR and SCA. Atmospheric inversions and terrestrial ecosystem models indicate strong northern land carbon uptake during spring but substantially reduced carbon uptake (or high emissions) during early autumn, which amplified SCA but also resulted in a small anomaly in annual carbon uptake of northern ecosystems in 2015-2016. This negative ecosystem carbon uptake anomaly in early autumn was primarily due to soil water deficits and more litter decomposition caused by enhanced spring productivity. Our study demonstrates a decoupling between seasonality and annual carbon cycle balance in northern ecosystems over 2015-2016, which is unprecedented in the past five decades of El Niño events.


Assuntos
Ecossistema , El Niño Oscilação Sul , Atmosfera , Carbono , Ciclo do Carbono , Dióxido de Carbono
11.
Front Physiol ; 12: 571137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737880

RESUMO

Concern is often voiced over the ongoing loss of atmospheric O2. This loss, which is caused by fossil-fuel burning but also influenced by other processes, is likely to continue at least for the next few centuries. We argue that this loss is quite well understood, and the eventual decrease is bounded by the fossil-fuel resource base. Because the atmospheric O2 reservoir is so large, the predicted relative drop in O2 is very small even for extreme scenarios of future fossil-fuel usage which produce increases in atmospheric CO2 sufficient to cause catastrophic climate changes. At sea level, the ultimate drop in oxygen partial pressure will be less than 2.5 mm Hg out of a baseline of 159 mmHg. The drop by year 2300 is likely to be between 0.5 and 1.3 mmHg. The implications for normal human health is negligible because respiratory O2 consumption in healthy individuals is only weakly dependent on ambient partial pressure, especially at sea level. The impacts on top athlete performance, on disease, on reproduction, and on cognition, will also be very small. For people living at higher elevations, the implications of this loss will be even smaller, because of a counteracting increase in barometric pressure at higher elevations due to global warming.

12.
New Phytol ; 229(5): 2413-2445, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32789857

RESUMO

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Assuntos
Sequestro de Carbono , Ecossistema , Atmosfera , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática
13.
Global Biogeochem Cycles ; 34(11): e2019GB006170, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33380771

RESUMO

In this "Grand Challenges" paper, we review how the carbon isotopic composition of atmospheric CO2 has changed since the Industrial Revolution due to human activities and their influence on the natural carbon cycle, and we provide new estimates of possible future changes for a range of scenarios. Emissions of CO2 from fossil fuel combustion and land use change reduce the ratio of 13C/12C in atmospheric CO2 (δ13CO2). This is because 12C is preferentially assimilated during photosynthesis and δ13C in plant-derived carbon in terrestrial ecosystems and fossil fuels is lower than atmospheric δ13CO2. Emissions of CO2 from fossil fuel combustion also reduce the ratio of 14C/C in atmospheric CO2 (Δ14CO2) because 14C is absent in million-year-old fossil fuels, which have been stored for much longer than the radioactive decay time of 14C. Atmospheric Δ14CO2 rapidly increased in the 1950s to 1960s because of 14C produced during nuclear bomb testing. The resulting trends in δ13C and Δ14C in atmospheric CO2 are influenced not only by these human emissions but also by natural carbon exchanges that mix carbon between the atmosphere and ocean and terrestrial ecosystems. This mixing caused Δ14CO2 to return toward preindustrial levels in the first few decades after the spike from nuclear testing. More recently, as the bomb 14C excess is now mostly well mixed with the decadally overturning carbon reservoirs, fossil fuel emissions have become the main factor driving further decreases in atmospheric Δ14CO2. For δ13CO2, in addition to exchanges between reservoirs, the extent to which 12C is preferentially assimilated during photosynthesis appears to have increased, slowing down the recent δ13CO2 trend slightly. A new compilation of ice core and flask δ13CO2 observations indicates that the decline in δ13CO2 since the preindustrial period is less than some prior estimates, which may have incorporated artifacts owing to offsets from different laboratories' measurements. Atmospheric observations of δ13CO2 have been used to investigate carbon fluxes and the functioning of plants, and they are used for comparison with δ13C in other materials such as tree rings. Atmospheric observations of Δ14CO2 have been used to quantify the rate of air-sea gas exchange and ocean circulation, and the rate of net primary production and the turnover time of carbon in plant material and soils. Atmospheric observations of Δ14CO2 are also used for comparison with Δ14C in other materials in many fields such as archaeology, forensics, and physiology. Another major application is the assessment of regional emissions of CO2 from fossil fuel combustion using Δ14CO2 observations and models. In the future, δ13CO2 and Δ14CO2 will continue to change. The sign and magnitude of the changes are mainly determined by global fossil fuel emissions. We present here simulations of future δ13CO2 and Δ14CO2 for six scenarios based on the shared socioeconomic pathways (SSPs) from the 6th Coupled Model Intercomparison Project (CMIP6). Applications using atmospheric δ13CO2 and Δ14CO2 observations in carbon cycle science and many other fields will be affected by these future changes. We recommend an increased effort toward making coordinated measurements of δ13C and Δ14C across the Earth System and for further development of isotopic modeling and model-data analysis tools.

14.
Glob Chang Biol ; 26(8): 4462-4477, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32415896

RESUMO

Changing amplitude of the seasonal cycle of atmospheric CO2 (SCA) in the northern hemisphere is an emerging carbon cycle property. Mauna Loa (MLO) station (20°N, 156°W), which has the longest continuous northern hemisphere CO2 record, shows an increasing SCA before the 1980s (p < .01), followed by no significant change thereafter. We analyzed the potential driving factors of SCA slowing-down, with an ensemble of dynamic global vegetation models (DGVMs) coupled with an atmospheric transport model. We found that slowing-down of SCA at MLO is primarily explained by response of net biome productivity (NBP) to climate change, and by changes in atmospheric circulations. Through NBP, climate change increases SCA at MLO before the 1980s and decreases it afterwards. The effect of climate change on the slowing-down of SCA at MLO is mainly exerted by intensified drought stress acting to offset the acceleration driven by CO2 fertilization. This challenges the view that CO2 fertilization is the dominant cause of emergent SCA trends at northern sites south of 40°N. The contribution of agricultural intensification on the deceleration of SCA at MLO was elusive according to land-atmosphere CO2 flux estimated by DGVMs and atmospheric inversions. Our results also show the necessity to adequately account for changing circulation patterns in understanding carbon cycle dynamics observed from atmospheric observations and in using these observations to benchmark DGVMs.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Animais , Atmosfera , Mudança Climática , Ecossistema , Estações do Ano
15.
Glob Chang Biol ; 26(2): 807-822, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31437337

RESUMO

A multitude of disturbance agents, such as wildfires, land use, and climate-driven expansion of woody shrubs, is transforming the distribution of plant functional types across Arctic-Boreal ecosystems, which has significant implications for interactions and feedbacks between terrestrial ecosystems and climate in the northern high-latitude. However, because the spatial resolution of existing land cover datasets is too coarse, large-scale land cover changes in the Arctic-Boreal region (ABR) have been poorly characterized. Here, we use 31 years (1984-2014) of moderate spatial resolution (30 m) satellite imagery over a region spanning 4.7 × 106  km2 in Alaska and northwestern Canada to characterize regional-scale ABR land cover changes. We find that 13.6 ± 1.3% of the domain has changed, primarily via two major modes of transformation: (a) simultaneous disturbance-driven decreases in Evergreen Forest area (-14.7 ± 3.0% relative to 1984) and increases in Deciduous Forest area (+14.8 ± 5.2%) in the Boreal biome; and (b) climate-driven expansion of Herbaceous and Shrub vegetation (+7.4 ± 2.0%) in the Arctic biome. By using time series of 30 m imagery, we characterize dynamics in forest and shrub cover occurring at relatively short spatial scales (hundreds of meters) due to fires, harvest, and climate-induced growth that are not observable in coarse spatial resolution (e.g., 500 m or greater pixel size) imagery. Wildfires caused most of Evergreen Forest Loss and Evergreen Forest Gain and substantial areas of Deciduous Forest Gain. Extensive shifts in the distribution of plant functional types at multiple spatial scales are consistent with observations of increased atmospheric CO2 seasonality and ecosystem productivity at northern high-latitudes and signal continental-scale shifts in the structure and function of northern high-latitude ecosystems in response to climate change.


Assuntos
Mudança Climática , Ecossistema , Alaska , Regiões Árticas , Canadá , América do Norte
16.
Environ Sci Technol ; 53(16): 9636-9645, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31347357

RESUMO

California methane (CH4) emissions are quantified for three years from two tower networks and one aircraft campaign. We used backward trajectory simulations and a mesoscale Bayesian inverse model, initialized by three inventories, to achieve the emission quantification. Results show total statewide CH4 emissions of 2.05 ± 0.26 (at 95% confidence) Tg/yr, which is 1.14 to 1.47 times greater than the anthropogenic emission estimates by California Air Resource Board (CARB). Some of differences could be biogenic emissions, superemitter point sources, and other episodic emissions which may not be completely included in the CARB inventory. San Joaquin Valley (SJV) has the largest CH4 emissions (0.94 ± 0.18 Tg/yr), followed by the South Coast Air Basin, the Sacramento Valley, and the San Francisco Bay Area at 0.39 ± 0.18, 0.21 ± 0.04, and 0.16 ± 0.05 Tg/yr, respectively. The dairy and oil/gas production sources in the SJV contribute 0.44 ± 0.36 and 0.22 ± 0.23 Tg CH4/yr, respectively. This study has important policy implications for regulatory programs, as it provides a thorough multiyear evaluation of the emissions inventory using independent atmospheric measurements and investigates the utility of a complementary multiplatform approach in understanding the spatial and temporal patterns of CH4 emissions in the state and identifies opportunities for the expansion and applications of the monitoring network.


Assuntos
Poluentes Atmosféricos , Metano , Aeronaves , Teorema de Bayes , California , São Francisco
17.
Artigo em Inglês | MEDLINE | ID: mdl-30297462

RESUMO

In early 2016, we predicted that the annual rise in carbon dioxide concentration at Mauna Loa would be the largest on record. Our forecast used a statistical relationship between observed and forecast sea surface temperatures in the Niño 3.4 region and the annual CO2 rise. Here, we provide a formal verification of that forecast. The observed rise of 3.4 ppm relative to 2015 was within the forecast range of 3.15 ± 0.53 ppm, so the prediction was successful. A global terrestrial biosphere model supports the expectation that the El Niño weakened the tropical land carbon sink. We estimate that the El Niño contributed approximately 25% to the record rise in CO2, with 75% due to anthropogenic emissions. The 2015/2016 CO2 rise was greater than that following the previous large El Niño in 1997/1998, because anthropogenic emissions had increased. We had also correctly predicted that 2016 would be the first year with monthly mean CO2 above 400 ppm all year round. We now estimate that atmospheric CO2 at Mauna Loa would have remained above 400 ppm all year round in 2016 even if the El Niño had not occurred, contrary to our previous expectations based on a simple extrapolation of previous trends.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Assuntos
Dióxido de Carbono/análise , Sequestro de Carbono , El Niño Oscilação Sul , Temperatura , Atmosfera/análise , Modelos Teóricos
18.
Proc Natl Acad Sci U S A ; 114(39): 10361-10366, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893986

RESUMO

A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm-1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.


Assuntos
Atmosfera/análise , Dióxido de Carbono/análise , Mudança Climática , Plantas/metabolismo , Água/metabolismo , Ciclo do Carbono/fisiologia , Isótopos de Carbono/análise , Combustíveis Fósseis/análise , Fotossíntese/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-30984251

RESUMO

We report continuous surface observations of carbon dioxide (CO2) and methane (CH4) from the Los Angeles (LA) Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four "extra-urban" sites including two "marine" sites located south of LA in La Jolla (LJO) and offshore on San Clemente Island (SCI), one "continental" site located in Victorville (VIC), in the high desert northeast of LA, and one "continental/mid-troposphere" site located on Mount Wilson (MWO) in the San Gabriel Mountains. We find that a local marine background can be established to within ~1 ppm CO2 and ~10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. "Urban" and "suburban" sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California) site near downtown LA exhibits median hourly enhancements of ~20 ppm CO2 and ~150 ppb CH4 during 2015 as well as ~15 ppm CO2 and ~80 ppb CH4 during mid-afternoon hours (12:00-16:00 LT, local time), which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014). The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much larger than the measurement uncertainty. The background uncertainty for the marine background estimate is ~10 and ~15 % of the median mid-afternoon enhancement near downtown LA for CO2 and CH4, respectively. Overall, analytical and background uncertainties are small relative to the local CO2 and CH4 enhancements; however, our results suggest that reducing the uncertainty to less than 5 % of the median mid-afternoon enhancement will require detailed assessment of the impact of meteorology on background conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...