Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 301(3): R641-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21653877

RESUMO

Many animals hoard food, including humans, but despite its pervasiveness, little is known about the physiological mechanisms underlying this appetitive behavior. We summarize studies of food hoarding in humans and rodents with an emphasis on mechanistic laboratory studies of species where this behavior importantly impacts their energy balance (hamsters), but include laboratory rat studies although their wild counterparts do not hoard food. The photoperiod and cold can affect food hoarding, but food availability is the most significant environmental factor affecting food hoarding. Food-deprived/restricted hamsters and humans exhibit large increases in food hoarding compared with their fed counterparts, both doing so without overeating. Some of the peripheral and central peptides involved in food intake also affect food hoarding, although many have not been tested. Ad libitum-fed hamsters given systemic injections of ghrelin, the peripheral orexigenic hormone that increases with fasting, mimics food deprivation-induced increases in food hoarding. Neuropeptide Y or agouti-related protein, brain peptides stimulated by ghrelin, given centrally to ad libitum-fed hamsters, duplicates the early and prolonged postfood deprivation increases in food hoarding, whereas central melanocortin receptor agonism tends to inhibit food deprivation and ghrelin stimulation of hoarding. Central or peripheral leptin injection or peripheral cholecystokinin-33, known satiety peptides, inhibit food hoarding. Food hoarding markedly increases with pregnancy and lactation. Because fasted and/or obese humans hoard more food in general, and more high-density/high-fat foods specifically, than nonfasted and/or nonobese humans, understanding the mechanisms underlying food hoarding could provide another target for behavioral/pharmacological approaches to curb obesity.


Assuntos
Comportamento Animal , Ingestão de Alimentos , Comportamento Alimentar , Privação de Alimentos , Hormônios/metabolismo , Vias Neurais/metabolismo , Neuropeptídeos/metabolismo , Animais , Temperatura Baixa , Cricetinae , Metabolismo Energético , Humanos , Obesidade/metabolismo , Obesidade/psicologia , Fotoperíodo , Ratos , Reprodução
2.
Mol Psychiatry ; 14(1): 37-50, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18698320

RESUMO

An increase in corticotropin-releasing factor (CRF) is a putative factor in the pathophysiology of stress-related disorders. As CRF expression in the central nucleus of the amygdala (CeA) is important in adaptation to chronic stress, we hypothesized that unrestrained synthesis of CRF in CeA would mimic the consequences of chronic stress exposure and cause dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, increase emotionality and disrupt reproduction. To test this hypothesis, we used a lentiviral vector to increase CRF-expression site specifically in CeA of female rats. Increased synthesis of CRF in CeA amplified CRF and arginine vasopressin peptide concentration in the paraventricular nucleus of the hypothalamus, and decreased glucocorticoid negative feedback, both markers associated with the pathophysiology of depression. In addition, continuous expression of CRF in CeA also increased the acoustic startle response and depressive-like behavior in the forced swim test. Protein levels of gonadotropin-releasing hormone in the medial preoptic area were significantly reduced by continuous expression of CRF in CeA and this was associated with a lengthening of estrous cycles. Finally, sexual motivation but not sexual receptivity was significantly attenuated by continuous CRF synthesis in ovariectomized estradiol-progesterone-primed females. These data indicate that unrestrained CRF synthesis in CeA produces a dysregulation of the HPA axis, as well as many of the behavioral, physiological and reproductive consequences associated with stress-related disorders.Molecular Psychiatry (2009) 14, 37-50; doi:10.1038/mp.2008.91; published online 12 August 2008.


Assuntos
Tonsila do Cerebelo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo , Estimulação Acústica , Animais , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Hormônio Liberador da Corticotropina/genética , Dexametasona , Feminino , Regulação da Expressão Gênica , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde , Atividade Motora , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/fisiologia , Reprodução/genética , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Estresse Psicológico/fisiopatologia , Natação , Transdução Genética/métodos
3.
J Undergrad Neurosci Educ ; 7(2): A74-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-23493377

RESUMO

Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one's field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both research and teaching methodology. The FIRST program provides fellows with outstanding interdisciplinary biomedical research training in fields such as neuroscience. The postdoctoral research experience is integrated with a teaching program which includes a How to Teach course, instruction in classroom technology and course development and mentored teaching. During their mentored teaching experiences, fellows are encouraged to explore innovative teaching methodologies and to perform science teaching research to improve classroom learning. FIRST fellows teaching neuroscience to undergraduates have observed that many of these students have difficulty with the topic of neuroscience. Therefore, we investigated the effects of interactive teaching methods for this topic. We tested two interactive teaching methodologies to determine if they would improve learning and retention of this information when compared with standard lectures. The interactive methods for teaching action potentials increased understanding and retention. Therefore, FIRST provides excellent teaching training, partly by enhancing the ability of fellows to integrate innovative teaching methods into their instruction. This training in turn provides fellows that matriculate from this program more of the characteristics that hiring institutions desire in their new faculty.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...